
1

Memory+C, CS314 Fall 01, BGR 1

Issues about Memory
& C

• Bindings and lifetimes
• Static, stack, heap storage

– Run time stack
– Problems with heap storage
– Garbage collection

• C
– RAM architecture
– Comparison to Java
– Control-flow statements
– Running C programs
– Sample program

Memory+C, CS314 Fall 01, BGR 2

Names, Bindings, Memory

• Binding - an association between two items (e.g., a
name and a memory location)

• Compile time - often layout of data in memory is
chosen at this time, static

• Link time - separately complied modules of a
program are joined together by linker (e.g., adding
in standard library routines for I/O)

• Load time - time when program is actually loaded
into memory to run.
– Virtual addresses versus physical addresses

• Run time - when program executes, dynamic

2

Memory+C, CS314 Fall 01, BGR 3

Binding Times - Choices

• Earlier binding times -- more efficient
• Later binding times -- more flexibility in PL
• Examples of static binding:

– Function signature types in C
– Declared types in Pascal or Algol

• Examples of dynamic binding:
– Methods called in Java or virtual calls in C++
– Actual types of objects pointed to by a Java reference

variable

Memory+C, CS314 Fall 01, BGR 4

Lifetimes
• Binding lifetime:

– E.g., by reference variable passed to a Fortran subroutine

• Variable exists before and after the subroutine call and the
parameter/argument binding lifetime

– E.g., object created by a new() in a Java program

• Object exists after the return from the method that creates it. But if all
its references were local to the called method, there is no way to reach
the object -- GARBAGE. Here lifetime of object is longer than lifetime of
reference binding.

– E.g., recursive data structure created dynamically in a C++ function
and then disposed without resetting the pointer which referred to it.

• Data structure doesn’t exist and so pointer is pointing to garbage -
DANGLING POINTER Here lifetime of data structure is shorter than
lifetime of pointer binding to its address as a value.

3

Memory+C, CS314 Fall 01, BGR 5

Kinds of Data Storage

• Static data - given absolute address which is the
same throughout execution

• Stack data - local storage allocated on a run time
stack for use in a method or function; lifetime of
stack variables is the time the method call takes to
complete.
– Needs a stack management algorithm during execution to manage

storage for method calls

• Heap data - long-lived storage which is allocated
and deallocated at arbitrary times during execution.
– Needs the most complex storage management algorithm

Memory+C, CS314 Fall 01, BGR 6

Examples of Static Data

• Numeric constants

• String constants
• Tables of types in the program (e.g., Java

inheritance structure) and other run time tables the
compiler produces

4

Memory+C, CS314 Fall 01, BGR 7

Examples of Stack Data

• Parameters

• Local variables
• Compiler-generated temporaries (I.e., for

expression evaluation
• Stack management information

Memory+C, CS314 Fall 01, BGR 8

Runtime Stack
• Idea: when method is entered, its frame is placed on the

stack and currentFramePointer is updated. All accesses for
local variables use this frame. When method is exited, frame
is removed from the stack and currentFramePointer is
updated.

• Stack contains frames of all methods which have
been entered and not yet exited from

• Frame contains all information necessary to update
stack when method is exited

• Addresses for local variables encoded as stack
frame plus offset

5

Memory+C, CS314 Fall 01, BGR 9

 Frame Details
• Fixed length portion (per procedure)

– Return pointer into stack frame of caller
– Return address (to code within caller)
– Saved state (register values of caller)
– Address accessing mechanism for nonlocal variables

• Variable length portion
– Local variable storage (including parameters)
– Compiler-generated temporary storage for

subexpressions

Memory+C, CS314 Fall 01, BGR 10

Frame Example
t1
b
c
CalledBy bar()
Foo in class A
Return Jumpto
address
a

public void method foo(A a){
 B b,c; … a = new B();…return;}

Assume foo() is called by bar().

foo’s frame on the runtime stack

Temp
Locals

stackInfo

Return address
in the code
Parameter stackInfo contains pointer to

bar’s frame, type information
about foo, base address for
foo’s frame.

Scott, p110

6

Memory+C, CS314 Fall 01, BGR 11

Heap Storage

• Heap allows allocation and deallocation of
indeterminate sized blocks of storage during
execution
– E.g., objects, variable length Strings in Java, recursive

data structures like lists and trees in C and Pascal

• Fragmentation of the heap - use of many small
areas in the heap sometimes makes it impossible to
allocate, even when the sum of the free space is
enough.

Free list of heap blocks not in use. How to pick best block
to allocate from?

Memory+C, CS314 Fall 01, BGR 12

Heap Storage

• Need to compact storage to ensure have
enough memory

• Need to deallocate storage after program is
finished using it

• Some PLs have explicit deallocation
commands, but all up to the programmer
then (e.g., C, Pascal)

7

Memory+C, CS314 Fall 01, BGR 13

Problems with Explicit Control
of Heap

• Dangling reference
– Storage pointed to is freed, but pointer(or reference) is

not set to NULL
– Then you are able to access storage whose values are not

meaningful

• Garbage
– Pointer(or reference) itself is freed (perhaps by execution

going out of its declaring scope), but heap locations
pointed to are not freed

– Then, there is no way to access this heap storage

• Memory leaks
– Failure to release storage builds up over time

Memory+C, CS314 Fall 01, BGR 14

Garbage Collection (GC)

• Implicit allocation and deallocation
• Overhead at run time to have a separate process

run at same time as program
– Analyzes usage of heap and recovers pieces of storage no

longer reachable from user pointers
– Execution time cost traded for easier job for user
– Many, many kinds of GC algorithms - active CS research

area today
– E.g., functional languages such as Scheme, Java, Ada,

Modula

8

Memory+C, CS314 Fall 01, BGR 15

C, An Imperative PL

• Assignment as main operation
– Names ⇔ Locations ⇔ Values

– L-value: name labeling memory
location

– R-value: contents of memory
location

• State of a computation
– M: Locations -> Values
– Remaining input
– Output so far

x

5

Memory+C, CS314 Fall 01, BGR 16

RAM: Random Access
Machine

• Normal control flows from one instruction to the
next
– Thread of computation: sequence of program points

reached as execution flows through the program

• Control flow directs the thread without changing
state

• Data flow (through assignment) affects the state
without directly affecting the thread

• Imperative PLs have primitives close to the machine
instructions (e.g., assignment, branch)

9

Memory+C, CS314 Fall 01, BGR 17

Bird’s Eye View: C versus Java
• Types: int, double, char
• Pointer (to a value)
• Aggregates: array, struct
• Control flow: if-else, switch,

while, break, continue, for,
return, goto

• Logic operators: || && !
• Logical comparisons: == !=
• Numeric comparisons: < >

<= >=
• string as char * array

• Primitive types: int, double,
char, boolean

• Reference (to objects)

• Aggregates: array, object

• Control flow: if-else, switch,
while, break, continue, for,
return

• Logic operators: || && !

• Logical comparisons: == !=

• Numeric comparisons: < >
<= >=

• String as an object

Memory+C, CS314 Fall 01, BGR 18

C Control-Flow Stmts

• if, with and without else clause
if (c == eof) break
if (x != 5) continue else x = 10;

• looping statements
– while (Expr) Stmt
– do Stmt while (Expr)
– for (Expr; Expr; Expr) Stmt
– break, continue

10

Memory+C, CS314 Fall 01, BGR 19

C Control-Flow Statements

while ((c = getchar()) != eof) putchar(c);

 Embedded side effects in expressions allowed!

for (j=0; s[j] == ‘ ‘; j++) ; empty statement is body of for

for (k=0; k<n; k++)

{ if (a[k]<0) continue; … }

• switch, a form of case
• goto

goto start

Memory+C, CS314 Fall 01, BGR 20

Structured Programming

• Controversy in 1970’s on PL design
– Goto-less programming
– Dijkstra versus Knuth

• Main idea: control flow should be obvious from syntactic
structure of program
– single-entry, single-exit loops
– Fortran and C both had goto statements

• Boehm-Jacopini Theory: any control structure can be
expressed as a combination of composition, conditionals and
while loops!

11

Memory+C, CS314 Fall 01, BGR 21

C Example, hello.c
/*sample program to do hello world
 and print the numbers from 1 to 10*/
#include<stdio.h>
main (void)
{ int j, n;

 printf(" hello world\n");
 n = 10;
 for (j = 0; j <= n; ++j)
 printf(" %d",j);
 printf("\n the even numbers are: ");
 for (j = 0; j < 11; ++j)
 if ((j%2) == 0) printf(" %d",j);

 printf("\n");
}

Memory+C, CS314 Fall 01, BGR 22

C Example Output

/*when hello.c is run it looks like this:

scherzo!c> gcc hello.c

scherzo!c> a.out

 hello world

 0 1 2 3 4 5 6 7 8 9 10

 the even numbers are: 0 2 4 6 8 10

scherzo!c>

*/

12

Memory+C, CS314 Fall 01, BGR 23

Running a C program
• gcc <filename> calls the GNU C compiler to

compile the file.
– This produces an executable a.out in the same directory
– Type a.out at the prompt to run the C program

• When you have several .c files to compile, link and
run you often use the -o option to give the
executable a name

>gcc -o pgm test.c des.c
puts the executable translation of the program in the

files test.c and des.c in the file pgm
>pgm
runs the program

