
1

C2,  CS314 Fall0, BGR 1

C - 2

• More on RAM
• Example programs using pointers

– Multiple level pointers

– Building a linked list in Java versus C
• Use of malloc(), free()

• Heap versus stack storage

C2,  CS314 Fall0, BGR 2

C Data Types

• Primitive: char, int, double (+others)
– Without boolean type, any nonzero value is true; zero is

false

• Aggregates: arrays, structs
– homogeneous arrays

char a[10]; int b[2][10]

– heterogeneous structs
struct employee{ struct rectangle{

int age;    struct point p1;
double payrate;    struct point p2;
} }



2

C2,  CS314 Fall0, BGR 3

C Data Types
• Pointers: variables whose value is the L-value

of a variable
– address-of operator &
– dereference operator for a pointer to obtain its R-

value *

x

5

p

int *p;
p = &x;
*p = 5;

C2,  CS314 Fall0, BGR 4

C Data Types

– Pointers can point to pointer variables (called
multi-level pointers)

int *p;
int ** r;
p = &x;
*p = 5;
r = &p;
**r = 10;

x

10

pr



3

C2,  CS314 Fall0, BGR 5

Pointers versus References
• Need explicit dereference

operator *
• Can mutate R-value of a

pointer through pointer
arithmetic
p = p +3;

• Casting means  type
conversion of kind of value
pointed to

• Special relation to arrays

• Are implicitly
dereferenced

• Cannot mutate R-value of
a reference

• Casting just satisfies the
type checker; does no type
conversion

• No special relation to
arrays

C2,  CS314 Fall0, BGR 6

Pointers and Arrays

• An array name is considered pointer to first
element
– a  is pointer to a[0]
– pa = &a[0] and pa = a mean the same thing
– a+1 means L-value of a[0] plus as many bytes as

are needed to store value of elements of a’s type
• Pointer arithmetic is an address calculation with respect

to the underlying architecture

• An array name is not a variable
– a++  and a = pa are ILLEGAL!



4

C2,  CS314 Fall0, BGR 7

RAM

• A universal computing device, similar to a
Turing Machine

• Components:
– Program-sequence of instructions
– Memory-sequence of locations
– Control-current location in program
– Input file- sequence of values
– Output file-sequence of values

• Control flows from one instruction to next

C2,  CS314 Fall0, BGR 8

L-values and R-values

• L-value of location M[j] is location j
• R-value of location M[j] is contents of

location j
– M[j] = M[k] means fetch the r-value of location

k and store it into location j (the l-value of M[j])

– Indirect addressing
• L-value of M[M[j]] is location M[j];
• R-value of M[M[j]] is contents of location M[j]



5

C2,  CS314 Fall0, BGR 9

RAM Instructions

• Assignment: corresponding C stmt
M[j]=k; j = k
M[j]=M[l]+M[n]; j= l+n
M[j]=M[l]-M[n]; j= l-n
M[j]=M[M[l]]; j=*l
M[M[j]]=M[k]; *j=k

• Input: read M[k];
• Output: write M[k];
• Branch: if M[k] >= 0 then goto loop
• Halt: halt;

C2,  CS314 Fall0, BGR 10

Multipleptr.c
#include<stdio.h>
/*program to show multiple levels of dereference*/
main( )
{       int j, k, l;
        int *q;
        int **s;
        j = 99;

  q = &j; /* q = j is ILLEGAL */
      s = &q; /* s = q is ILLEGAL */

/*all these names **s, *q, j are synonyms or aliases
for the same storage location at this program point*/

        printf(" %d %d %d\n",**s, *q, j);
}
/* output
47 scherzo!c> gcc multipleptr.c
48 scherzo!c> a.out
 99 99 99  */



6

C2,  CS314 Fall0, BGR 11

Problems with Pointers

• Uninitialized pointers
– int *a;  *a = 12;

• Can get segmentation fault error when value in a is
meaningless address

• Can actually store 12 into some memory location
accessible to your program, whose address
corresponds to the random bits in a

C2,  CS314 Fall0, BGR 12

Problems with Pointers

• Null doesn’t point to anything by definition
so it cannot be dereferenced
– a = 0; /* makes pointer a’s value NULL  */
– if (a == NULL) … /* tests for a NULL pointer

value*/

• Multiple level pointers
– Can be used as L-values or R-values

int a;
int *d;
d = &a;
a = 5;
*d = 10 +*d;
a   =  10 + 5d a

5

d a

⇒ 15



7

C2,  CS314 Fall0, BGR 13

Exerpt from List in Java
public class List extends Object {
protected Object element;
protected List subList;
  /**
   * Create an new List, initially empty.
   */
  public List() {

element = null;
subList = null;

  }

//cons operation
  public List(Object newElement,List oldList){

element = newElement;
subList = oldList;

} }

C2,  CS314 Fall0, BGR 14

How List building works?

List p = new List();

“a”

List q = new List(“a”,p);

“a”“b”

List(“b”,q);



8

C2,  CS314 Fall0, BGR 15

 list.c
/*sample program to write a linear linked list of

integers built like in Java, adding new elements on
the front*/

#include<stdio.h>

/*this makes these definitions and variables global*/

typedef struct cell listcell;

struct cell{

int num;

listcell *next;

};

listcell *head, *ele, *p;

C2,  CS314 Fall0, BGR 16

list.c, cont.
main(void)
{ int j;
/*create first node in list*/

head = (listcell *) malloc(sizeof (listcell));
head->next = NULL;

cast
Allocates heap storage

/*now create entries in list of numbers from 1 to 10*/
head->num = 1;
for (j=2; j<11; j++)
{ ele = (listcell *) malloc(sizeof (listcell));

ele->num = j;
ele->next =head; /***/
head = ele;

}
/*now traverse the list and print the elements*/

for (p=head; p!=NULL; p=p->next)
printf("%d ",p->num);

printf("\n");
}



9

C2,  CS314 Fall0, BGR 17

list.chead

1

2 1

ele

ele

2 13

at /***/ in 1st iteration

at /***/ in 2nd iteration

head

head

for (j=2; j<11; j++)
{ ele=/* &(new listcell*/

ele->num = j;
ele->next =head; /***/
head = ele;

}

head->num = 1;

C2,  CS314 Fall0, BGR 18

list.c output
scherzo!c> gcc list.c
scherzo!c> ./a.out
10 9 8 7 6 5 4 3 2 1
scherzo!c>



10

C2,  CS314 Fall0, BGR 19

Review: Stack vs Heap

• Procedure activations,
statically allocated local
variables, parameter
values

• Lifetime same as block
in which variables are
declared

• Stack frame with each
invocation of procedure

• Dynamically allocated
data structures, whose
size may not be known
in advance

• Lifetime extends
beyond block in which
they are created

• Must be explicitly
freed or garbage
collected

C2,  CS314 Fall0, BGR 20

Heap Storage
void  *malloc (size_t   n)

– returns pointer to block of contiguous storage of n bytes
(chars), if possible

– if not enough memory left for allocation, malloc returns
a NULL pointer

• So you ALWAYS have to check return the value
– to allocate storage of a different type requires sending

malloc the proper amount of bytes needed and casting
the return pointer value appropriately

head = (listcell *) malloc(sizeof (listcell));



11

C2,  CS314 Fall0, BGR 21

 listwithfree.c
/*sample program to write a linear linked list of

integers built like in Java, adding new elements on
the front*/

#include<stdio.h>

/*this makes these definitions and variables
globals*/

typedef struct cell listcell;

struct cell{

int num;

listcell *next;

};

listcell *head, *ele, *p;

Same declarations as list.c

C2,  CS314 Fall0, BGR 22

listwithfree.c, cont.
main(void)
{ int j;
/*create first node in list*/

head = (listcell *) malloc(sizeof (listcell));
/*now create other entries in list of numbers from 1

to 10*/
head->num = 1;
for (j=2; j<11; j++)
{ ele = (listcell *) malloc(sizeof (listcell));

ele->num = j;
ele->next =head; /***/
head = ele;

}
/*now traverse the list and print the elements*/

for (p=head; p!=NULL; p=p->next)
printf("%d ",p->num);

printf("\n");
}

Same building of the list
and printing it out as list.c



12

C2,  CS314 Fall0, BGR 23

listwithfree.c, cont.
/*now delete the first 2 elements of the list and

free their storage */
ele = head->next;  /*1*/
free (head); /* free 1st list element storage*/
head = ele;
ele = head->next; /*2*/

  free (head); /* free 2nd list element storage*/
head = ele; /*3*/

/*now traverse the list and print the elements*/
for (p=head; p!=NULL; p=p->next)

printf("%d ",p->num);
printf("\n");

}

C2,  CS314 Fall0, BGR 24

Trace

head
9 810

ele

...

9 8

head

...

ele

After ele = head->next;  /*1*/

After free (head);
head = ele;  
ele = head->next; /*2*/



13

C2,  CS314 Fall0, BGR 25

listwithfree.c, cont.

/* output
59 scherzo!c> a.out
10 9 8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
60 scherzo!c> */

8 ...

ele

head

After free (head); 
head = ele; /*3*/

9 8

head

...

ele


