
1

C3, CS314 Fall 01, BGR 1

C - 3

• Pointer expressions as L-values or R-values
• How to pass back values from functions?
• Casting

– To simulate subtyping

– Unsafe capabilities

• Pointer arithmetic
• Input with scanf()

C3, CS314 Fall 01, BGR 2

Pointer Expressions
What happens here? Legality of usage

depends on type declaration of
pointer.

int j = 5; int h = 10;
int *k, **n, *l;
&j, legal as R-value, illegal as L-value
k = &j; n=&k;

*n, legal R-value and L-value

*n = &h;

l = *n;

j h

5 10

j
5

kn

h
10

kn
l

(1) (1)

(2)

(2)

2

C3, CS314 Fall 01, BGR 3

Pointer Expressions

**n, legal R-value, legal L-value

**n = **n+1;

*k, legal R-value, legal L-value

 h = *k - 2;

*k = 0;

h
11

kn

l

h
0

kn

l

int *k, **n, *l;

C3, CS314 Fall 01, BGR 4

Side Effects in Functions

• All parameter passing in C is call-by-value
– Means parameter values are copied into a called

function but NOT copied back out at return

• To accomplish side effects, need to use pointer
valued parameters
– Address of actual variable is passed into the

function

– Variable is always accessed indirectly through the
corresponding pointer parameter

3

C3, CS314 Fall 01, BGR 5

Example
main(void)

{ int i,j;

 i= 1; j = 2;
 printf("%d %d\n",i,j);

 j= incr(&i);

 printf("%d %d\n",i,j);

}

int incr(int *a)

{ int z;

 if ((*a)%2 != 0) {z = 1; (*a)++;}
 else z= 0;

 return z;

}

incr() increments its argument
by 1 and then returns 1 if the
value of its parameter was odd.

remus!c> a.out
1 2
2 1

 ret_vals.c

C3, CS314 Fall 01, BGR 6

Example
#include<stdio.h>

/*this makes these definitions and variables globals*/

/*this is a user-defined type in C*/
typedef struct cell employee;

struct cell{

 int age;

 char *name;
 employee *next;

};

employee *company[2];/*defines an array of pointers to
employee's*/

/*each element of this array points to a struct cell*/

 employee.c

4

C3, CS314 Fall 01, BGR 7

Example
main(void)

{ employee *z;

/* create storage for employee records*/

 company[0] = (employee *)malloc(sizeof(employee));

 company[1] = (employee *)malloc(sizeof(employee));

/* initialize company array */

 (company[1])->age = 54;

 (company[1])->name = "Barbara Ryder";

 (company[0])->age = 28;

 (company[0])->name = "Beth Ryder";

 if (find_over49(&z) != 0) printf(" %s \n",z->name);

}

C3, CS314 Fall 01, BGR 8

Example

/* z is of type employee *, so address(z) is value of
an employee ** var*/

int find_over49(employee **a)

{

 int ans, i;
 ans = -1;

 for (i=0; i<2; i++)

 if (((company[i])-> age) > 49){ans = i;break;}

 /*example of multiple return values from a c
function*/

 if (ans == (-1)) return 0;
 else { *a = company[ans]; return 1;

 };

}

a company[]

Barbara

54

instance of
employee

5

C3, CS314 Fall 01, BGR 9

Example
/* a sample run

128 remus!c> gcc employee.c

129 remus!c> a.out

 Barbara Ryder

*/

C3, CS314 Fall 01, BGR 10

Casting

• Safe uses of casting
– For pointers returned from malloc

p = (int *) malloc (4);

– For simulating subtyping safely in C
struct s{ struct t{ s is like a subtype of t

int a; int a; because it has same
int b; int b; fields as t plus an
double c; } extra field.

}

6

C3, CS314 Fall 01, BGR 11

newcasting.c
/*example due to satish chandra of bell labs
 this is a use of casting that is like subtyping*/
#include<stdio.h>
typedef struct{
 int x,y;
 }point;
typedef enum{
 RED, BLUE
 }color;
typedef struct{
 int x,y;
 color c;
 }colorpoint;
void translateX(point *p, int dx){
 p ->x += dx; /*translates x co-ordinate by 1*/
}

C3, CS314 Fall 01, BGR 12

newcasting.c
main(){
 point p;
 colorpoint cp;
/* initialize p to (0,0) and cp to (1,1) */
 p.x = 0;
 p.y = 0;
 cp.x = 1;
 cp.y = 1;
 cp.c = RED;
 printf(" p= %d,%d cp= %d,%d\n",p.x,p.y,cp.x,cp.y);
/* move x co-ordinate by 1 for both points*/
 translateX(&p, 1);
 translateX((point *) &cp, 1);
 printf("after translation, p= %d,%d cp= %d,%d\n”,

p.x,p.y,cp.x,cp.y);
 }

7

C3, CS314 Fall 01, BGR 13

Output
/* output resulting
20 scherzo!c> gcc newcasting.c
21 scherzo!c> a.out
 p= 0,0 cp= 1,1
after translation, p= 1,0 cp= 2,1
22 scherzo!c>
*/

point

int

int

colorpoint

int

int

color

Why the cast works?

C3, CS314 Fall 01, BGR 14

Pointer Arithmetic
int *k; k=&j;
(*k+1), legal R-value, illegal L-value
(*k+1) means ((*k)+1)

h = *k +1;
*(k+1) legal (but not meaningful) L-value, legal R-value
/*need to know layout of storage to see to what (k+1) points,

to the byte that is 4 bytes beyond the L-value of k, since
adding 1 is like adding storage for 1 int (4 bytes)*/

k++ has same properties when used with *

j
5

k

8

C3, CS314 Fall 01, BGR 15

 newpointerarith.c
struct person{
 int age;
 int socsecnum;
 int phoneno;
};

main()
{ int a[5], j;

int *pa, *pb;
struct person people[3];
struct person *zz;

 for (j = 0; j < 6; j++)
a[j] = j;/* initialize a */

a, array of ints;
people, array of struct persons

C3, CS314 Fall 01, BGR 16

newpointerarith.c
for (j = 0; j < 6; j++)

 printf(" %d",a[j]);

printf("\n");

pa = &a[0];

for (pb = a; pb < &a[6]; pb++)

{ printf(" %d %d", *pa,*pb);

pa = pa + 1;

}

printf("\n");

 33 1 scherzo!c> a.out
 0 1 2 3 4 5
 0 0 1 1 2 2 3 3 4 4 5 5

9

C3, CS314 Fall 01, BGR 17

newpointerarith.c
j=0;
while (!feof(stdin) && j<3)
{ scanf("%d%d%d", &(people[j].age),
&(people[j].socsecnum), &(people[j].phoneno));

printf("output with array elements %d %d %d\n",
 (people[j]).age,(people[j]).socsecnum,
 (people[j]).phoneno);
j++;

}/* can I use people[j]->age? Why or why not? */
/* output:

52 999 3699 26 111 5430 24 222 3361 --I typed this at the
output with array elements 52 999 3699 terminal
output with array elements 26 111 5430
output with array elements 24 222 3361

*/

C3, CS314 Fall 01, BGR 18

newpointerarith.c
/* wow. this works! */

printf("\n");
zz = people;/*remember people is an array*/
for (j = 0; j<3; j++)
 { printf("output with pointer %d %d %d\n",

 (*zz).age,zz->socsecnum,zz->phoneno);
zz = zz + 1;

 }
printf("\n");

/* output:
output with pointer 52 999 3699
output with pointer 26 111 5430
output with pointer 24 222 3361 */

10

C3, CS314 Fall 01, BGR 19

Don’t do this!
/* c is wonderful; look at it breaking strong typing

easily*/

zz=(struct person *) &j;

printf(" %d\n",zz->age);

/* output
3

--so c actually interprets the value of j (an int) as
the value of the first field of a person struct, age
(an int)*/

C3, CS314 Fall 01, BGR 20

Pointers and Structs

• Field access uses “.” operator
 e.g., (people[j]).age

• -> is shorthand for * .
for listcell * p, p -> num means (*p). num

• that’s why this works when zz is a pointer:
(*zz).age,zz->socsecnum

11

C3, CS314 Fall 01, BGR 21

C Functions

• Prototype - often found in a *.h (header)file;
used for compiler for type checking function
calls

int mult(int k, int n);

• Definition - contains code of the function
 int mult(int k,int n){

return k*n;}

• Invocation
int j,n=50; … j = mult(4,n);

C3, CS314 Fall 01, BGR 22

Strings

• Strings are arrays of chars, as in Pascal
– Because of special relation between array names and

pointers, often see strings defined as char *

• String library contains useful functions
int strcmp(char *s,char *t): returns value < 0 if s is less than

t (in lexicographic order), 0 if s == t and >0 if t is less than
s.

char * strcpy(char *s, char *t): copies the string pointed to
by t into the string pointed to by s; to work this needs t to
be declared big enough to store the string.

12

C3, CS314 Fall 01, BGR 23

Strings

int strcpy (char *s, char *t){

for (; *t != ‘\0’; s++,t++)
*t = *s;

}
On return, t points to a copy of the string pointed to by

s. Means you had to have allocated storage for t
BEFORE calling strcpy().

Q: What is the difference in meaning of
t = s versus *t = *s ??

C3, CS314 Fall 01, BGR 24

Strings and Chars

• Ascii collating sequence encodes characters
representing letters as consecutive integers;
therefore this works:
char s,t;

scanf(“ %c %c “, &s, &t);

if (s < t) ….

