
1

Concurrency, CS314 Fall019© BGRyder 1

Concurrency

• What is concurrent programming?
• Dining philosophers

– Deadlock, livelock, fairness

– Mutual exclusion

• Rendezvous in Ada
– Ada syntax

Concurrency, CS314 Fall019© BGRyder 2

Concurrent Programming
• Allows multiple threads of computation at

same time
• Two general models of architecture

– Shared memory and distributed memory

...

Memory

bus

processor

Shared memory model

Interconnection Network

memory
...

processor

Distributed memory model
(message passing)

2

Concurrency, CS314 Fall019© BGRyder 3

Concurrent Programming
• Hardware - in parallel means operations overlap in

time performed
• Concurrent source operations means they can be, but

need not be, executed in parallel
– Potential for parallelism

• Process - a sequential computation with its own
thread of control
– Communication through shared variables or explicit

messages

• Event - atomic action (uninterruptible)
• Thread of a process - sequence of events

Concurrency, CS314 Fall019© BGRyder 4

Concurrent Programming

• Key issues
– How concurrent processes synchronize and

communicate with other processes?
– Synchronization relates one thread to another in

terms of exchange of control information
– Communication usually implies an exchange of

data
– Unix pipes are examples of implicit

synchronization. processes connected by stream of
data

• e.g., ls -lg * | more

3

Concurrency, CS314 Fall019© BGRyder 5

Concurrency as Interleaving

• Interleaving of threads - possible orderings
that maintain relative order of events
within one thread
{ a; b} {x; y; z}
a x b y z interleaving preserves relative order

a b x y z of events in any particular thread

a x y b z , etc.

Concurrency, CS314 Fall019© BGRyder 6

Interleavings

x
y
z

a b

a x b y z

x
y

a b x y z

a b

z

a x y b z

x
y

a b

z

{ a; b} {x; y; z}

Geometric portrayal of interleavings

4

Concurrency, CS314 Fall019© BGRyder 7

Coroutines vs Procedure Calls

Coroutine flow of control
between S and T; communication
always returns to where it last left off.

S T

Procedure call flow of
control between W and V;
V is fully executed every
time its called from W.

W V

call

call

Concurrency, CS314 Fall019© BGRyder 8

Coroutines

• Represented by a closure that changes each time it
runs (i.e., entry point and environment is updated)

• Used for discrete event simulation

• Provided by Simula, Modula-2
• Scott 8.6 commands

– detach - creates coroutine object to which control can be later
transferred and returns a reference to this coroutine to the caller

– transfer(param) - saves the current coroutine (with program counter)
and resumes the coroutine specified as param

– resume(param) - causes execution of coroutine param to start again

5

Concurrency, CS314 Fall019© BGRyder 9

Iterator example exerpt, Scott p 477

Coroutine from_to_by(from, to, by:int; ref j: int; ref done: bool;
caller:coroutine)

j := from
if by > 0 then { done:= (from >= to)

 detach
 loop

 { j += by
 done := (j <= to)

 transfer(caller) //yield j
 }

 }
end from_to_by

added small syntax changes for clarity

Concurrency, CS314 Fall019© BGRyder 10

Dining Philosophers Problem
Philosophers eat
and talk at dinner.
To eat, a philosopher
must use 2 forks;
however, if her
neighbor is eating,
she cannot eat.
To think, a philosopher
puts down both her forks

6

Concurrency, CS314 Fall019© BGRyder 11

Dining Philosophers
Deadlock: a chain of dependences
in which one process depends on
a resource held by another process

Each philosopher:
loop: pickup fork on right; (lock resource)
 pickup fork on left;
 eat;
 release forks; (unlock resource)
 think;
end loop;
Results in “pickup fork on right and wait for fork on left”.

Concurrency, CS314 Fall019© BGRyder 12

Dining Philosophers
Livelock: continuing execution,
but without progress

if all philosophers do:
pickup left fork;
release left fork;
pickup right fork;
release right fork;
…

7

Concurrency, CS314 Fall019© BGRyder 13

Dining Philosophers

• Fairness: any process that wishes to execute
can do so in a finite amount of time
– So every philosopher should get a chance to eat in

a fair algorithm

– Example with 2 philosophers
• What if one philosopher reaches for fork on her left

while other reaches for fork on her right (i.e., the same
fork). then they both reach for the fork on the other
side. This prevents deadlock by ordering requests for
resources. ordered resource usage

Concurrency, CS314 Fall019© BGRyder 14

Shared Data

• Mutual exclusion: many processes share a resource,
but only 1 can use it at a time.

• Critical section: section of code that must be executed
as if it is atomic (usually involves shared data)
– Each thread executes its critical section completely before

another thread can enter its related critical section
(containing access to the same shared data).

– Must make sure that 2 threads can never access shared
data at the same time, one to read and one to write, or both
to write.

8

Concurrency, CS314 Fall019© BGRyder 15

Ada Concurrency

• Rendezvous mechanism
– Symmetric, 1st thread to arrive has to wait for

2nd thread

– Mutual exclusion is enforced during rendezvous
• Body of accept clause acts as critical section

– Handshake communication
• Either client waits for server to answer OR
• Server waits for anonymous client to call

Concurrency, CS314 Fall019© BGRyder 16

Ada Rendezvous
P
begin

Q.synch

Q
begin

accept synch do

end synch

end Qend P

server_name . entry_name

entry_name

client or caller server or callee

9

Concurrency, CS314 Fall019© BGRyder 17

Ada Syntax

• entry call
<server_name>.<entry_name>

• entry
accept <entry_name>

{(<params>)} do
{ sequence of statements}

end <entry_name>

• nondeterministic choice
of entries
select accept X do

…
end X;

accept Y do
…

end Y;

end select

Concurrency, CS314 Fall019© BGRyder 18

More Ada Syntax
• guarded entries: all guards (i.e., exprj)

evaluated when select is entered; choice
among the true guards is nondeterministic.
select when expr1 => accept X do

…
end X;

 or when expr2 => accept Y do
…
end Y;

end select;

10

Concurrency, CS314 Fall019© BGRyder 19

Producer-Consumer Model

• A model for managing explicit parallelism,
communication between tasks
– Producer -- reads in values one by one, “processing” them and then

passing them on.

– Consumer - uses values one by one, “chewing” them before printing
them.

– But they run at independent speeds!! This requires explicit
synchronization between tasks

• Our job: to examine several examples of attempted
synchronization and critique them

Concurrency, CS314 Fall019© BGRyder 20

First (incorrect) Attempt

task consumer
body{

d: char;
loop{ d := g;

put(chew(d));
}

}

task producer
body{

c: char;
loop{

get (c);
c := process (c);
g := c;
}

}
global variable g;

11

Concurrency, CS314 Fall019© BGRyder 21

Synch via Global Variable

task consumer
entry take;

body{
d: char;
loop{

accept take do
d := g;
put (chew(d));

end take;
}

}

task producer
body{

c: char;
loop{

get (c);
g := process (c);
consumer.take;
}

}

Tasks use global variable g to communicate.
Result is essentially a sequential program.

Concurrency, CS314 Fall019© BGRyder 22

Synch via Local Variable

task producer
body{

c,g : char;
loop{

get (c);
g := process (c);
consumer.take (g);
}

}

task consumer
entry take(x: in char);

body{
d: char;
loop{

accept take(d) do
end take;
put (chew(d));
}

}

Tasks communicate through a parameter to the rendezvous
with same effect of sequentializing execution.

12

Concurrency, CS314 Fall019© BGRyder 23

Semaphores

• Semaphores invented by Dijkstra, 1968
• Semaphore uses {value, p, v}

– value is an integer variable

– p : if value >=1 then a process can perform a p
operation to decrement value by 1, else a process
attempting a p must wait until value becomes >=1

– v: a process can perform a v operation to
increment value by 1

Concurrency, CS314 Fall019© BGRyder 24

Binary Semaphores

• Value is always either 0 or 1
– p: if value >= 1 then value -- ; otherwise, wait

– v: value++

• Can implement in Ada using a task

13

Concurrency, CS314 Fall019© BGRyder 25

Synch w. Binary Semaphore

task type binary-semaphore
entry p;
entry v;

body{
loop{

accept p;
accept v;

end loop; }
}
critical : new binary-semaphore;
declare and initialize global queue Q;
startup the producer and consumer;

task producer
body{

c : char;
loop{

get (c);
c := process (c);
critical.p;
g := c;
critical.v;
}

}

task consumer
body{

d: char;
loop{

critical.p;
d := g;
critical.v;
put (chew(d));
}

}

Use semaphore to protect accesses
to g, which protect data transfer.

Concurrency, CS314 Fall019© BGRyder 26

Questions

• What if we wrote one critical section as?
critical.v … critical.p or
critical.p … critical.p
misplacing semaphore operations is hazardous!

• What happens if there are multiple consumers
and one producer?
– This discipline may not work. May need to

simulate size of inputs already seen in a non-
binary semaphore and use ++/-- operations for p
and v.

