Concurrency

* What isconcurrent programming?
 Dining philosophers

— Deadlock, livelock, fairness

— Mutual exclusion
* Rendezvousin Ada

— Ada syntax

Concurren Icy, CS314 Fall019© BGRyder

Concurrent Programming

» Allows multiple threads of computation at
sametime

» Two general models of architecture

— Shared memory and distributed memory
Distributed memory model
(message passing)

Shared memory model

[processor

PO P

Memory | I nterconnection Network

Concurren \cy, CS314 Fall019© BGRyder

Concurrent Programming

Hardware - in parallel means operationsoverlap in

time performed

Concurrent sour ce oper ations means they can be, but

need not be, executed in paralle

— Potential for parallelism

Process - a sequential computation with its own

thread of control

— Communication through shared variablesor explicit
messages

Event - atomic action (uninterruptible)

Thread of a process - sequence of events

Concurren Icy, CS314 Fall019© BGRyder 3

Concurrent Programming

» Keyissues
— How concurrent processes synchronize and
communicate with other processes?

— Synchronization relates onethread to another in
terms of exchange of control information

— Communication usually implies an exchange of
data

— Unix pipes are examples of implicit
synchronization. processes connected by stream of
data

* eg.,ls-lg* | more

Concurren \cy, CS314 Fall019© BGRyder 4

Concurrency as Interleaving

* Interleaving of threads - possible orderings
that maintain relative order of events
within onethread

{a& b} {x;y; z}

axbyz interleaving preservesrelative order
abxyz of eventsin any particular thread
axybz,etc.

Concurren Icy, CS314 Fall019© BGRyder

|nterleavings

Geometric portrayal of interleavings

Concurren \cy, CS314 Fall019© BGRyder

Coroutinesvs Procedure Calls

/ /" | Procedure call flow of
'\ * control between W and V;

v V isfully executed every
timeits called from W.

Y

Coroutine flow of control

between S and T; communication
alwaysreturnsto whereit last left off.

Concurrency, CS314 Fall019© BGRyder 7

Coroutines

* Represented by a closurethat changes each timeit
runs (i.e., entry point and environment is updated)

» Used for discrete event smulation
* Provided by Simula, Modula-2

e Scott 8.6 commands

— detach - creates coroutine object to which control can be later
transferred and returnsareferenceto this coroutineto the caller

— transfer(param) - savesthe current coroutine (with program counter)
and resumes the coroutine specified as param

— resume(param) - causes execution of coroutine param to start again

Concurrency, CS314 Fall019© BGRyder 8

|terator example exerpt, scotpar

Coroutinefrom_to_by(from, to, by:int; ref j: int; ref done: bool;
caller:coroutine)

| added small syntax changes for clarity |

j :=from
if by > 0then { done:= (from >=t0)
detach
loop
{j+=by

done:=(j <=to)
transfer (caller) /lyield j
}
}

end from_to_by

Concurrency, CS314 Fall019© BGRyder 9

Dining Philosophers Problem

Philosophers eat

and talk at dinner.

To eat, a philosopher O /
must use 2 forks; \

however, if her O
neighbor is eating, O

O\ ©

To think, a philosopher
puts down both her forks

Concurrency, CS314 Fall019© BGRyder 10

Dining Philosophers

Deadlock: a chain of dependences
in which one process depends on
aresour ce held by another process

O/
Each philosopher: Q @

loop: pickup fork on right; (lock resource)
pickup fork on left;

O
release forks; (unlock resour ce) O \

think;
end loop;
Resultsin “pickup fork on right and wait for fork on left”.

Concurren \cy, CS314 Fall019© BGRyder 1

Dining Philosophers

Livelock: continuing execution

but without progress Q /
if all philosophersdo: Q Q

pickup left fork;
release left fork;
pickup right fork;

—
releaseright fork; O \

Concurren \cy, CS314 Fall019© BGRyder 12

Dining Philosophers

e Fairness. any processthat wishesto execute
can do soin afinite amount of time
— So every philosopher should get a chanceto eat in
afair algorithm
— Examplewith 2 philosophers

» What if one philosopher reachesfor fork on her left
while other reachesfor fork on her right (i.e., the same
fork). then they both reach for thefork on the other
side. Thispreventsdeadlock by ordering requestsfor
resources. ordered resource usage

Concurren Icy, CS314 Fall019© BGRyder 13

Shared Data

* Mutual exclusion: many processes share a resour ce,
but only 1 can useit at atime.

e Critical section: section of code that must be executed
asif it isatomic (usually involves shared data)

— Each thread executesitscritical section completely before
another thread can enter itsrelated critical section
(containing access to the same shar ed data).

— Must make surethat 2 threads can never access shared
data at the sametime, onetoread and oneto write, or both
towrite.

Concurren \cy, CS314 Fall019© BGRyder 14

Ada Concurrency

* Rendezvous mechanism
— Symmetric, 1st thread to arrive hasto wait for
2nd thread
— Mutual exclusion isenforced during rendezvous
» Body of accept clause acts as critical section
— Handshake communication

* Either client waitsfor server to answer OR
» Server waitsfor anonymousclient to call

Concurren Icy, CS314 Fall019© BGRyder 15

Ada Rendezvous

P Q
begin begin
entry_name
Q.synch|, accept_s%/nch do
server_nta?we .entry_name
end synch
client or caler server or calee

Concurren \cy, CS314 Fall019© BGRyder 16

Ada Syntax

e entry call » nondeter ministic choice
<server_name>.<entry_name> of entries
e entry select accept X do
accept <entry_name> e
{(<params>)} do end X:
{ sequence of statements} accept Y do
end <entry_name>
endY;
end select
More Ada Syntax

e guarded entries. all guards (i.e., exprj)
evaluated when select is entered; choice
among the true guardsis nondeter ministic.
select when exprl => accept X do

end X;
or when expr2 => accept Y do

endY;
end select;

Concurren \cy, CS314 Fall019© BGRyder 18

Producer-Consumer M odel

* A model for managing explicit parallelism,
communication between tasks

— Producer -- readsin values one by one, “processing” them and then
passing them on.

— Consumer - usesvalues one by one, “chewing” them before printing
them.

— But they run at independent speeds!! Thisrequiresexplicit
synchronization between tasks
* Our job: to examine several examples of attempted
synchronization and critique them

Concurrency, CS314 Fall019© BGRyder 19

First (incorrect) Attempt

task producer task consumer
body{ body{
c: char; d: char;
loop{ loop{ d:=g;
get (c); put(chew(d));
¢ := process (C); }
g:=c }
}
! global variable g;
Concurrency, CS314 Fall019© BGRyder »

10

Synch via Global Variable

Tasks use global variable g to communicate.
Result is essentially a sequential program.

task producer task consumer
body{ entry take;
c: char; body{
loop{ d: char;
get (c); loop{
g := process (C); accept take do
consumer .take; d:=g;
} put (chew(d));
} end take;
}
}
Concurrency, CS314 Fall019© BGRyder ”

Synch via Local Variable

Tasks communicate through a parameter to the rendezvous
with same effect of sequentializing execution.

task producer task consumer
body{ entry take(x: in char);
¢,g: char; body{
loop{ d: char;
get (c); loop{
g := process (C); accept take(d) do
consumer.take (Q); end take;
} put (chew(d));
} }
}

Concurrency, CS314 Fall019© BGRyder 22

Semaphores

» Semaphoresinvented by Dijkstra, 1968

» Semaphoreuses{value, p, v}
—valueisan integer variable

—p : if value >=1 then a process can perform ap
oper ation to decrement value by 1, else a process
attempting a p must wait until value becomes >=1

— V: aprocess can perform av operation to
increment value by 1

Concurren Icy, CS314 Fall019© BGRyder 23

Binary Semaphores

* Valueisalwayseither Oor 1
— p: if value >= 1 then value -- ; otherwise, wait
—Vv: valuet++

» Can implement in Ada using a task

Concurren \cy, CS314 Fall019© BGRyder 24

12

Synch w. Binary Semaphore

task type binary-semaphore
entry p;
entry v;
body{
loop{
accept p;
accept v;
end loop; }
}

critical : new binary-semaphore;
declare and initialize global queue Q;
startup the producer and consumer;

task producer task consumer
body{ body{
C:. Char, d: Char,
loop{ loop{
g?t:(;)ri)cess o critical.p;
critical.p; w—)> d t:ga;I)
) g:=c; critical.v;
critical.v; put (chew(d));
} }
} }

Concurrency, CS314 Fall019© BGRyder

Use semaphor e to protect accesses
to g, which protect data transfer.

25

Questions

« What if wewroteonecritical section as?
critical.v ... critical.p or

critical.p ... critical.p

misplacing semaphor e oper ations is hazar dous!
* What happensif there are multiple consumers

and one producer ?

— Thisdiscipline may not work. May need to
simulate size of inputs already seen in a non-
binary semaphore and use ++/-- operationsfor p

and v.

Concurrency, CS314 Fall019© BGRyder

26

13

