
1

Concurrency2, CS314 Fall01© BGR/ABr
1

Concurrency - 2Concurrency - 2

• Buffered communication
• Monitors - a higher level concept than

semaphores
• Concurrency mechanisms in PLs
• Message passing

Concurrency2, CS314 Fall01© BGR/ABr
2

More More Ada Ada SyntaxSyntax

• Task syntax
procedure go_to_movie is

task find_seats;

task buy_popcorn;

task body find_seats is … end;

task body buy_popcorn is … end;

begin

watch_movie;-- both tasks start executing here

end; -- Ada runtime system waits for all tasks to complete here

• Static model of concurrency

2

Concurrency2, CS314 Fall01© BGR/ABr
3

Buffer SynchronizationBuffer Synchronization
task buffer

entry enter (x: in char);
entry remove(x: out char);

body{ declare and initialize private queue Q;
loop{ select

when (Q not full) =>
accept enter(v);

add v to back of Q;
end enter;

or when (Q not empty) =>
accept remove(v)

remove front of Q into v;
end remove;

end select}
end loop}

 }

task producer
body{

c: char;
loop{

get(c);
c := process(c);
buffer.enter(c);
}

}

task consumer
body{

d: char;
loop{

buffer.remove(d);
put (chew (d));
}

}

Concurrency2, CS314 Fall01© BGR/ABr
4

To use buffer solutionTo use buffer solution
procedure main{

task buffer{…};

begin c: consumer; //both processes ;launched at procedure elaboration time

 p: producer; //both refer to global task buffer{}

…

end main;

What happens if…
•producer and consumer alternate?
•producer is faster?
•consumer is faster?
•have more than one consumer: c1, c2: consumer;
•have more than one producer: p1, p2: producer:

3

Concurrency2, CS314 Fall01© BGR/ABr
5

Buffer with SemaphoresBuffer with Semaphores

• Use binary semaphore to implement critical
section on a global queue. Assume that not
full and not empty are manipulated by the
queue procedure

• This next attempt is buggy; can you see the
problem?
– Lesson: semaphores are low-level and difficult to

program correctly

Concurrency2, CS314 Fall01© BGR/ABr
6

 task producer
body{ c: char;

loop{
get(c);
c := process(c);
critical.p;
if not full, add c to Q;
critical.v;
}

}

task consumer
body{d: char;

loop{
critical.p;
if not empty remove d from Q;
critical.v;
put(chew(d));
}

}

task type binary-semaphore
entry p;
entry v;

body{
loop{ accept p;

 accept v;
}

}
critical : new binary-semaphore;
declare and initialize global queue Q;
startup the consumer and producer.

What’s possibly wrong here?

4

Concurrency2, CS314 Fall01© BGR/ABr
7

Another ExampleAnother Example
ok,fin : new binary-semaphore;
ok := 0; fin := 1;
procedure producer
{ while (there is more input) do

{fin.p;
{write rec to buffer}
ok.v;}

}

procedure consumer
{ while (true) do

{ok.p;
{read rec from buffer}
fin.v;}

}

Here ok is 1 when there is something
to read in the buffer. so consumer has
input. fin is 1 when the buffer should
be overwritten with new input. so
producer needs to write.

Example of ensuring an alternating
access to a shared resource with 2
binary semaphores.

Concurrency2, CS314 Fall01© BGR/ABr
8

task PRODCON is
entry GIVE (C: in CHARACTER)
entry TAKE (D: out CHARACTER)

end;
task body PRODCON is

LIMIT: constant INTEGER := 100;
POOL: array (1 .. LIMIT) of CHARACTER;
INP,OUTP: INTEGER range 1 .. LIMIT := 1;
COUNT: INTEGER range 0 .. LIMIT := 0;
begin
 loop select

 when COUNT < LIMIT =>
 accept GIVE (C: in CHARACTER) do
 POOL(INP) := C;

 end;
 INP := INP mod LIMIT + 1;
 COUNT := COUNT + 1;
or when COUNT > 0

 accept TAKE (D: out CHARACTER) do
 D := POOL (OUTP);
end;
 OUTP := OUTP mod LIMIT + 1;
 COUNT := COUNT -1;
end select;

 end loop;
 end PRODCON

specification of task

implementation of task

add a character

remove a character

Real Ada example from Horwitz,
 Fundamentals of PLs, 1984 CS Press

Input: “a b c” inp outp count
initially 1 1 0
give(“a”) 2 1
give(“b”) 3 2
take(d) “a” 2 1
give(“c”) 4 2
take(d) “b” 3 1
take(d) “c” 4 0

5

Concurrency2, CS314 Fall01© BGR/ABr
9

MonitorsMonitors

• Module with operations, internal state and condition
variable(s)

• Only one operation can be active at a time
– If a thread calls a busy monitor, then the thread waits
– Monitor operation can suspend itself by waiting on a

condition variable
– Monitor operation may signal a condition variable

• Equal in power to semaphores but less error prone

Concurrency2, CS314 Fall01© BGR/ABr
10

MonitorsMonitors
monitor buffer {
 private

Queue Q;
 f(illable): condition

e(mptyable) : condition
 public

entry add(v){
 if Q is full { wait e}
 enter v in Q;
signal f
} //executed atomically!

entry remove (v){
if Q is empty {wait f}
remove v from Q;
signal e
} //executed atomically!

task producer
body{

c: char;
loop{

get(c);
c := process(c);
buffer.add(c);
}

}

task consumer
body{

d: char;
loop{

buffer.remove(d);
put (chew (d));
}

}

6

Concurrency2, CS314 Fall01© BGR/ABr
11

Concurrency Mechanisms inConcurrency Mechanisms in
PLsPLs

• Co-begin, co-end
– Used to indicate a set of statements to be

performed in parallel
– Usually assumed to have access to same stack

frame
– Found in PLs SR, Algol68, Occam
– Task parallelism

x = 5;

par begin

 P(2),

 y = x+2,
 x = 3,

 Q(33,’a’)

par end

all start

all finish

Concurrency2, CS314 Fall01© BGR/ABr
12

Concurrency Concurrency MechsMechs, cont., cont.
• Parallel loop

– Define a loop with all its iterations executing in
parallel

– For safety, can’t have any dependences between
loop iterations

• E.g., if we had a[j] = a[j-1] then the calculation
on iteration j depends on iteration j-1.

• Parallelizing FORTRAN compilers do analysis to
check for this type of condition before transforming
programs to this form

• Data parallelism
forAll(i=5 to 10)

 a[i]= 3*b[i];

 a[i+1]= 2+a[i];

end forAll;

7

Concurrency2, CS314 Fall01© BGR/ABr
13

Concurrency Concurrency MechsMechs, cont., cont.

• Task launch at procedure ‘elaboration’ or
call
– Tasks in Ada and SR are created when declaring

procedure is invoked

– Procedure can’t finish until all tasks are
completed (barrier synchronization like co-begin,
co-end)

– task parallelism
procedure P{

 task T is … end T;

 begin --P
 ...
 end --P

Concurrency2, CS314 Fall01© BGR/ABr
14

Concurrency Concurrency MechsMechs, cont., cont.

• Explicit fork/join - explicit, executable thread
creation
– Threads are objects that are created dynamically

anywhere in the executing program

– Can create arbitrary patterns of concurrency

– Fork creates thread; join allows thread to wait for
previously created thread

– In Ada (as a type), Modula-3, Java, SR

class myThread extends Thread {…}
…
myThread first = new myThread();

8

Concurrency2, CS314 Fall01© BGR/ABr
15

Concurrency Concurrency MechsMechs, cont., cont.

• Remote procedure call (implicit receipt)
– Idea of migrating a computation to another

processor

– Need to gather arguments and code and transfer

– Then execute code on other processor and return
results back to original machine

– Execution is taking place in another address
space from the thread creator

Concurrency2, CS314 Fall01© BGR/ABr
16

Message PassingMessage Passing

• Distributed systems communication
• Naming communication partners

– Explicit process naming (1 to 1 communication)
– Port naming (receiver has named ports to which

senders can send messages; n to 1
communication)

– Channel naming (both senders and receivers
name channels for communic; n to n
communication)

9

Concurrency2, CS314 Fall01© BGR/ABr
17

Message PassingMessage Passing

• Sending information
– Problem: how much may this block the caller
– No-wait send: sender blocks for no more than a

small bounded amount of time; messages are
copied by runtime mechanism which is
responsible for delivery

– Synchronization send: Sender waits until message
is received

– Remote-invocation send: Sender waits until
receives reply

Concurrency2, CS314 Fall01© BGR/ABr
18

Message PassingMessage Passing

• Receiving information
– Explicit receive: e.g., Ada accept

– Implicit receive: new thread is created to deal
with the receive

