Concurrency - 2

Buffered communication

Monitors- a higher level concept than
semaphor es

Concurrency mechanismsin PLs
M essage passing

Concurrency?2, CS314 Fall01© BGR/ABr

More Ada Syntax

» Task syntax
procedurego_to movieis

task find_seats;

task buy_popcorn;

task body find_seatsis ... end;

task body buy_popcornis... end;

begin

watch_movie;-- both tasks start executing here
end; -- Ada runtime system waits for all tasks to complete here

» Static model of concurrency

Concurrency?2, CS314 Fall01© BGR/ABr

Buffer Synchronization

task buffer task producer
entry enter (x: in char); body{
entry remove(x: out char); c: char;
body{ declare and initialize private queue Q; loop{
loop{ select get(c);
when (Q not full) => ¢ := process(c);
accept enter(v); buffer.enter(c);
add v to back of Q; }
end enter; }
or when (Q not empty) =>
accept remove(v) task consumer
remove front of Qintov; body{
end remove; d: char;
end sdlect} loop{
end loop} buffer.remove(d);
} put (chew (d);
}
}
Concurrency2, CS314 Fall01© BGR/ABr

To use buffer solution

procedure main{
task buffer{...};
begin c: consumer; //both processes ;launched at procedure elaboration time
p: producer; //both refer to global task buffer{}

end main;

What happensiif...

eproducer and consumer alternate?

eproducer is faster?

econsumer isfaster?

*have more than one consumer: c1, c2: consumer;
*have more than one producer: pl, p2: producer:

Concurrency?2, CS314 Fall01© BGR/ABr

Buffer with Semaphores

» Use binary semaphoreto implement critical
section on a global queue. Assumethat not
full and not empty are manipulated by the

gueue procedure

» Thisnext attempt isbuggy; can you seethe

problem?

— Lesson: semaphores are low-level and difficult to

program correctly

Concurrency?2, CS314 Fall01© BGR/ABr

task type binary-semaphore

entry p;

entry v;
body{

loop{ accept p;

accept v;
}

}

critical : new binary-semaphore;

startup the consumer and producer.

task consumer
body{d: char;
loop{
critical.p;
if not empty remove d from Q;
critical.v;
put(chew(d));
}
}

declare and initialize global queue Q;

What' s possibly wrong here?

Concurrency?2, CS314 Fall01© BGR/ABr

task producer
body{ c: char;
loop{

get(c);
¢ := process(c);
critical.p;
if not full, add cto Q;
critical.v;

}

Another Example

ok,fin : new binary-semaphore;
ok :=0; fin:=1,
procedur e producer
{ while (thereis more input) do
{fin.p;
mmm)> { write rec to buffer}
ok.v;}

procedur e consumer
{ while (true) do
{ok.p;
s { read rec from buffer}
fin.v;}

}

Concurrency?2, CS314 Fall01© BGR/ABr

Here ok is1 when thereis something
toread in the buffer. so consumer has
input. finis1 when the buffer should
be overwritten with new input. so
producer needsto write.

Example of ensuring an alternating
access to a shared resource with 2
binary semaphores.

task PRODCON is
entry GIVE (C: in CHARACTER)
entry TAKE (D: out CHARACTER)
end;
task body PRODCON is
LIMIT: constant INTEGER := 100;

specification of task

implementation of task

POOL: array (1.. LIMIT) of CHARACTER;

INP,OUTP: INTEGER rangel..LIMIT :=1;

Input: “ab ¢’ inp outp count

EeC;iL;NT: INTEGER range0.. LIMIT :=0; initially 1 1 0
loop gWe(“ a) 2 1
when COUNT <LIMIT => give(*b") 3 2
CHONE(C NCHARCTER 00 take(d) &’ 2 1
enct =~ add acharacter give(“c”) 4 2
INP:=INPmod LIMIT + 1; take(d) “b” 3 1
COUNT := COUNT +1; take(d) “c’ 4 0
or when COUNT >0
accept TAKE (D: out CHARACTER) do
Di=POOL(OUTR): remove a character
end;
OUTP:=0UTPmod LIMIT +1;
COUNT := COUNT -1;
end loop; Real Ada example from Horwitz,
end PRODCON Fundamentalsof PLs, 1984 CS Press s

Concurrency?2, CS314 Fall01© BGR/ABr

Monitors

* Modulewith operations, internal state and condition
variable(s)

* Only one operation can be active at atime
— If athread callsa busy monitor, then thethread waits

— Monitor operation can suspend itself by waiting on a
condition variable

— Monitor operation may signal a condition variable
* Equal in power to semaphores but lesserror prone

Concurrency?2, CS314 Fall01© BGR/ABr

Monitors
monitor buffer { task producer
private body{
Queue Q; c: char;
f(illable): condition loop{
e(mptyable) : condition get(c);
public co= p;oceﬁ(c).
entry add(v){ » >
if Qis full { wait &} buffer.add(c);
enter vin Q; }
signal f }
} I/executed atomically! task consumer
body{
entry remove (v){ d: char;
if Qisempty {wait f} loop{
removev from Q; buffer.remove(d);
signal e put (chew (d));
} l/executed atomically! }
Concurrency?2, CS314 Fall01© BGR/ABr }

10

Concurrency Mechanismsin

PLs
e Co-begin, co-end
— Used toindicate a set of statementsto be
performed in parallel
— Usually assumed to have access to same stack

frame
— Found in PLs SR, Algol68, Occam
— Task parallelism
| X = 5;
al start par begin
P(2),
y = X+2,
.. X =3,
al finish | A33, &)
Concurrency2, CS314 Fall01© BGR/ABr par end H

Concurrency Mechs, cont.

« Parallel loop
— Definealoop with all itsiterations executing in
parallel
— For safety, can’t have any dependences between
loop iterations
* Eg.,ifwehada[j] = a[]-1] then thecalculation
on iteration j dependson iteration j-1.
* Parallelizing FORTRAN compilersdo analysisto
check for thistype of condition befor e transfor ming

grogram;tl‘;lt_h‘Sform forAlT(i=5 to 10)
ata parallelism ali]= 3*b[i]:

afi+1]= 2+a[i];
end forAll; @

Concurrency?2, CS314 Fall01© BGR/ABr

Concurrency Mechs, cont.

» Task launch at procedure ‘elaboration’ or
call

— Tasksin Ada and SR are created when declaring
procedureisinvoked

— Procedurecan’t finish until all tasksare
completed (barrier synchronization like co-begin,

co-end) _ procedure P{
— task parallelism task T is ..end T;
begin --P
Concurrency?2, CS314 Fall01© BGR/ABr end - - P B

Concurrency Mechs, cont.

» Explicit fork/join - explicit, executable thread
creation

— Threads are objectsthat are created dynamically
anywherein the executing program

— Can create arbitrary patterns of concurrency

— Fork createsthread; join allowsthread to wait for
previously created thread

—In Ada (asatype), Modula-3, Java, SR

cl ass nyThread extends Thread {.}

nyThread first = new nyThread(); 14

Concurrency?2, CS314 Fall01© BGR/ABr

Concurrency Mechs, cont.

» Remote procedure call (implicit receipt)

— Idea of migrating a computation to another
pr ocessor

— Need to gather arguments and code and transfer

— Then execute code on other processor and return
results back to original machine

— Execution istaking place in another address
space from the thread creator

15
Concurrency?2, CS314 Fall01© BGR/ABr

M essage Passing

 Distributed systems communication

« Naming communication partners
— Explicit process naming (1 to 1 communication)

— Port naming (receiver has named portsto which
senders can send messages; nto 1
communication)

— Channel naming (both sendersand receivers
name channelsfor communic; nton
communication)

16
Concurrency?2, CS314 Fall01© BGR/ABr

M essage Passing

» Sending information
— Problem: how much may this block the caller

— No-wait send: sender blocksfor no morethan a
small bounded amount of time; messages are
copied by runtime mechanism which is
responsiblefor delivery

— Synchronization send: Sender waits until message
IS received

— Remote-invocation send: Sender waits until
receivesreply

17
Concurrency?2, CS314 Fall01© BGR/ABr

M essage Passing

» Recelving information
— Explicit receive: e.g., Ada accept

— Implicit receive: new thread iscreated to deal
with thereceive

18
Concurrency?2, CS314 Fall01© BGR/ABr

