Formal Languages

Regular expressions
Finite state automata

— Deterministic

— Non-deter ministic

Review of BNF

I ntroduction to Grammars
— Regular grammars

Formal Languages, CS314 Fall2001 © BGRyder

Formal Languages

» A way to describe difficulty of computation
problems formulated aslanguage recognition
problems

* A mechanism to aid description of
programming language constr ucts
— Regular expressions - PL tokens (e.g., keywor ds)
— Finite state automata (FSAS)

Formal Languages, CS314 Fall2001 © BGRyder

Regular Expressions

Formalism for describing simple PL
constructs

— reserved words

— identifiers

—numbers

Simplest sort of structure

Recognized by a finite state automaton
Defined recursively

Formal Languages, CS314 Fall2001 © BGRyder

Formally

* PL isaset of strings (called sentences) over some
finite alphabet of symboals, called terminals
— Not necessarily a finite set

* Rulesdescribe how to combinethe terminalsinto
well-formed sentencesin the PL

» PLscategorized by complexity of theserules

— BNF used to describe context-free languages, most PL s
fall in this category

Formal Languages, CS314 Fall2001 © BGRyder

Regular Expressions

PL construct RE Notation L anguage
an empty RE {}

symbol a a {a}

null symbol e {e}

R,Sregular exprs R|S LpELg

a,bterminals alb (alternation) {a,b}

R,Sregular exprs RS LrLsg

a,b terminals ab (concatenation) {ab}

Formal Languages, CS314 Fall2001 © BGRyder

Regular Expressions

PL construct RE Notation L anqguage

R,Sregular exprs R* {e}E LRELRLRE LgLgLg...

a a {e ,a,aa,aaa,...}
R,Sregular exprs R* LRE LRLgRE LgLgLg...
a ar {a,aa,aaa,...}

Note: ea=ae=a
Precedenceis{* +} ----concatenation ---- |
high to low
(all areleft associative operators)

Formal Languages, CS314 Fall2001 © BGRyder

RE Examples

12 {1,2}
1']2 {2,e1,11,111,...}
12" (1,12, 122, 1222, ...}

12°|0* {0,00,000,...,1,12,122,...}
12" {1,212,11,21,22,...}
0" 1 Binary numbersthat end in 1

Formal Languages, CS314 Fall2001 © BGRyder

RE’'sfor PLs

» Let letter stand for alb|c]...|z and digit stand
for 0]1)2|3|4/5(6|7]8|9
— letter (letter | digit) * isidentifier
—digit * isinteger constant
—digit " . digit * isreal number
* Which identifiersare described by
— letter (letter | digit)® ? ABC 0C B% X1

Formal Languages, CS314 Fall2001 © BGRyder

Examples

* Which of thefollowing arelegal real numbers
described by

_digit*. digit* ? 5 15 2 4. 63 0.2

» Can seethat smple PL constructs can be
defined asregular expressions

— Can you define a number in scientific notation as
an RE?

Formal Languages, CS314 Fall2001 © BGRyder

Finite State Automaton (FSA)

» Recognizer of the language generated by a
regular expression

» Described by

<set of states, labelled transitions, start state, final state(s)>

<{$0,S1,S2},|S0 --9> S1, |0, {S1,52}>
0 S0 --> 2

—_—

(1/0) S

1'82

Formal Languages, CS314 Fall2001 © BGRyder

start
SO

10

FSA

» FSA acceptsor recognizes an input string iff
thereisapath from itsstart stateto afinal
state such that thelabels on the path arethe
terminalsin that string

— Empty transitions signify illegal moves; can think

of FSA goirbg toasnk error state inputs
sart @—» States:| 0 1
s1 SO(S1 2
1 S1|---
®- i
Formal Languages, CS314 Fall2001© BGRyder tr ang'tion tab|e

1

Examples

Binary numbers containing a pair of adjacent
s (0]|1)"11(0]|D)°

v/ 0 0 1
° 0,1 0| s1
start 1 0 4 S1 S1 2
‘ S| S1 S3
FSAL /1 3 S8 =

Formal Languages, CS314 Fall2001 © BGRyder

12

An Equivalent FSA

0

0
(R

C

FSA2

FSA1 and FSA2 recognize the same set of strings of terminals,
the samelanguage! Therefore FSAsare NOT UNIQUE.

Formal Languages, CS314 Fall2001 © BGRyder

13

Example

Exponent in scientific notation:
E(+]|-)digit*| E digit* digit

start . 7

S3
digit

Formal Languages, CS314 Fall2001 © BGRyder

14

Example

Binary numberswhich begin and end with a 1,

1(0]1)*1 (>0 /D1
@)@

S2

All binary number s containing at least one
digit, where all their 1'sprecede all their 0's

0*| 10" si/)1
' @—0—0

Formal Languages, CS314 Fall2001 © BGRyder

15

Jobsfor RES/FSASs

» Recognition
— Isthisstringin the language described (recognized) by
thisRE (FSA)?
» Description
— Given an RE (FSA), what language does it gener ate
(recognize)?
» Caodification
— Given alanguage, find an RE and FSA corresponding to it

Formal Languages, CS314 Fall2001 © BGRyder

16

Example

» Recognition
— Given 10*, which of these strings ar e described by
it? 1, 00, 10, 1000, 01

— Which of these strings 1, 00, 10, 1000, O1 is
recognized by the following FSA?

Ca e

Formal Languages, CS314 Fall2001 © BGRyder

17

Example

» Description
— What language is generated by (01)* | (10)*?
— What language isrecognized by this FSA?

/'// e \\\‘\\
What if we added \@.i, g
theetranstion? 1

0
0
@

Formal Languages, CS314 Fall2001 © BGRyder

18

Example

» Codification

— Complex constants ar e parenthesized pairs of
two integers
o Let digit stand for (0[1|2/3]4|5/6|7|8|9). Then the RE
is (digit*,digit*)
* FSA s
dlglt digit

Formal Languages, CS314 Fall2001 © BGRyder 19

Nondeterministic FSAs

e Allow morethan onetranstion with same
label

e Allow etransition

eg., (@O 1101~
DFSA: O

. Q/b ‘ 0,1
NFSA: 6301 @ ‘3 0,1

start

Formal Languages, CS314 Fall2001 © BGRyder 20

10

NFSAS

» Recognize a sentencein a language by
progressing from initial stateto afinal state
— Think of following many threads of computation
at sametime; one must lead to afinal statefor a
r ecognition to occur
« class of languagesrecognizable by NFSAsis
SAME as class of languages r ecognizable by
DFSAs.

* Therearealgorithmsto build NFSA directly
from RE

Formal Languages, CS314 Fall2001 © BGRyder 21

Example

0*|01* all binary numbers containing at least
one 0, in which all O'sproceed all 1's

DFSA:

1
1 't thi
0 ‘7 Why doesn’t this NFSA work?
start

@tz 71

NESA: 1 1 1
start OK’
0
@

Formal Languages, CS314 Fall2001 © BGRyder 22

11

RE to NFSA Construction

» Standardized trandation for RE expressions
into corresponding NFSAs

e Canthen trandateresulting NFSA into a
corresponding DFSA which recognizesthe
same language!

* All can be automated

Formal Languages, CS314 Fall2001 © BGRyder 23

RE to NFSA

start
e For ain alphabet, construct: F—2 -®
e For e construct:

A
gLt-LT
Se14-1-
Tebioly
N

Formal Languages, CS314 Fall2001 © BGRyder 24

12

RE to NFSA

e For st REs, for st construct: | €9.01

@ N(s)@m@

. eg., 0
e For RE s, s construct:

et One O

: 40O

\/

e

Formal Languages, CS314 Fall2001 © BGRyder

25

Example

» Build the NFSA for complex numbersusing
thisRE (digit*, digit *).

digit*

Notethisis same asKleene* machine
except for bottom etransition

—>

Formal Languages, CS314 Fall2001 © BGRyder

26

13

Formal Languages, CS314 Fall2001 © BGRyder

Example

(digit*, digit*)

Q: How can we makethis NFSA
efficient by converting it intoa DFSA?

Formal Languages, CS314 Fall2001 © BGRyder

14

NFSA to DFSA

(c|d) dd

C’d> _;\' d ;Q ‘ ;‘
SO S1 S2

Idea: look for sets of states with same transitions.

Let one state in the DFSA represent sets of statesin the NFSA

SO on c to {SO} {S0,51,52}
SO on d to {S0,S1}

{S0,S1} on cto {S0}
{S0,S1} on d t0 {S0,S1,S2}
{S0,51,S2} on c to {S0}
{S0,51,S2} on d to {S0,51,S2}

Formal Languages, CS314 Fall2001 © BGRyder 29

Backus Naur Form (BNF)

* Metasymbols < > o= |
e Terminal symbols of the PL

— e.g., keywords, operator s)
* Nonterminal symbols

<while_stmt> ::= while <expr> do <stmt>
<identifier> ::= <letter> | <identifier> <digit> |
<identifier> <letter>

Formal Languages, CS314 Fall2001 © BGRyder 30

EBNF

* Nonterminals begin with capital lettersor are
shown in a different font

» {...} meansrepeat the enclosed O or moretimes

* [...] meansthe enclosed is optional

* (...)isused for grouping, usually with the
alternation symbol |

e If{},[],0r ()areterminalsin thePL being
defined, then when they are used asterminalsthey
must be underlined
—{ } terminals, { } metasymbols

Formal Languages, CS314 Fall2001 © BGRyder 31

EBNF Examples

Identifier .:= Letter { LetterorDigit }
LetterorDigit ::= Letter | Digit

Expr ::=[Expr -] Subexpr

1 fStmt ::=if LogicExpr then Stmt [else Stmt]
CompoundStmt ::= begin Stmt {; Stmt} end
WhileStmt ::=while (LogicExpr) Stmt {; Stmt}
ArrayElement ::= I dentifier [Identifier |

Formal Languages, CS314 Fall2001 © BGRyder 32

16

Grammar

o <set of terminals, set of nonterminals,
productions (rules), special symbol>
— terminals are alphabet symbols
— nonterminals represent PL constructs (e.g., Stmt)

— productions arerulesfor forming syntactically
correct constructs

— gpecial symbol tellswhereto start applying the
rules

Formal Languages, CS314 Fall2001 © BGRyder

Example
<letter>::=
alblc|d|eff|g[hlili [k [lim|nolp|qlr|sftlulviw|x]y|z
<digit>::= 0|1]2|3|4|5|6|7|8|9
<identifier> ::= <letter> | <identifier> <letter> |
<identifier> <digit>
<assign-stmt> ::= <identifier> = 0 //terminals;

/Inonterminalsare
{<letter><digit><assign_stmt><identifier>}

//special symbol is<assign-stmt>

Formal Languages, CS314 Fall2001 © BGRyder

17

Regular PLs

e Form of rules

— Each rhsislength <= 2 symbols
A terminal or nonterminal
« anonterminal followed by aterminal

» All PLsdescribable by REscan bewritten as
regular grammars
eg.,12'|0t N:=X]|Y
X:u=1|X2
Y::=0|YO

Formal Languages, CS314 Fall2001 © BGRyder

35

18

