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Formal Languages

• Regular expressions
• Finite state automata

– Deterministic

– Non-deterministic

• Review of BNF
• Introduction to Grammars

– Regular grammars
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Formal Languages

• A way to describe difficulty of computation
problems formulated as language recognition
problems

• A mechanism to aid description of
programming language constructs
– Regular expressions - PL tokens (e.g., keywords)

– Finite state automata (FSAs)
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Regular Expressions

• Formalism for describing simple PL
constructs
– reserved words

– identifiers
– numbers

• Simplest sort of structure
• Recognized by a finite state automaton
• Defined recursively
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Formally
• PL is a set of strings (called sentences) over some

finite alphabet of symbols, called terminals
– Not necessarily a finite set

• Rules describe how to combine the terminals into
well-formed sentences in the PL

• PLs categorized by complexity of these rules
– BNF used to describe context-free languages, most PLs

fall in this category
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Regular Expressions
PL construct RE Notation Language

an empty RE { }
symbol a a {a}
null symbol ε {ε}

R,S regular exprs R | S LR ∪LS

a,b terminals a|b (alternation) {a,b}

R,S regular exprs RS  LRLS 

a,b terminals ab (concatenation)  {ab}
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Regular Expressions

PL construct RE Notation Language

R,S regular exprs    R*     {ε }∪ LR ∪ LR LR ∪ LR LR LR …
a   a* {ε ,a,aa,aaa,…}
R,S regular exprs    R+  LR ∪ LR LR ∪ LR LR LR ...

a   a+ {a,aa,aaa,…}
Note: ε a = a ε = a
Precedence is {* +} ----concatenation ---- | 

high to low
(all are left associative operators)
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RE Examples

1 | 2 {1,2}
1* | 2 {2, ε,1,11,111,…}

1 2* {1, 12, 122, 1222, …}

1 2* | 0+ {0,00,000,…,1,12,122,…}
(1 | 2)* {ε,1,2,12,11,21,22,…}

(0|1)* 1 Binary numbers that end in 1
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RE’s for PLs

• Let letter stand for a|b|c|…|z and digit stand
for 0|1|2|3|4|5|6|7|8|9
–  letter (letter | digit) *  is identifier

– digit +  is integer constant
– digit * . digit +  is real number

• Which identifiers are described by
– letter (letter | digit) *  ?  ABC  0C  B%  X1
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Examples

• Which of the following are legal real numbers
described by
– digit * . digit +  ?   .5   1.5   2    4.  6.3  0.2

• Can see that simple PL constructs can be
defined as regular expressions
– Can you define a number in scientific notation as

an RE?
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Finite State Automaton (FSA)

• Recognizer of the language generated by a
regular expression

• Described by
<set of states, labelled transitions, start state, final state(s)>

S1

S2

S0 0

1
(1|0)

<{S0,S1,S2}, S0 ---> S1,  S0, {S1,S2}>
           S0 ---> S2

0

1start
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FSA

• FSA accepts or recognizes an input string iff
there is a path from its start state to a final
state such that the labels on the path are the
terminals in that string
– Empty transitions signify illegal moves; can think

of FSA going to a sink error state
          0     1
  S0  S1      S2
  S1   ---     ---
  S2   ---       ---

transition table

inputs:
states:

S1

S2

S0
0

1

start
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Examples

Binary numbers containing a pair of  adjacent
1’s:  (0 | 1) * 1 1 (0 | 1) *

0

1

0

0

0, 1

1

1

S0 S1

S2
S3

   0 1
S0 S1 S2
S1 S1 S2
S2 S1 S3
S3 S3 S3

FSA1

start
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An Equivalent FSA

A B

C

0 0
0,1

1 1

FSA2

FSA1 and FSA2 recognize the same set of strings of terminals, 
the same language!  Therefore FSAs are NOT UNIQUE.

start
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Example

Exponent in scientific notation:
E (+ | -) digit + | E digit +

S0 S1 S2

S3

E +,- digit

digit

digit
start
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Example

Binary numbers which begin and end with a 1,
1(0|1)*1

All binary numbers containing at least one
digit, where all their 1’s precede all their 0’s

0+ | 1+0*

S0 S1

S2

1 1
10

0

S0
S1

S2

0

0

01
1

start

start
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Jobs for REs/FSAs

• Recognition
– Is this string in the language described (recognized) by

this RE (FSA)?

• Description
– Given an RE (FSA), what language does it generate

(recognize)?

• Codification
– Given a language, find an RE and FSA corresponding to it
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Example

• Recognition
– Given 10*, which of these strings are described by

it?     1,  00,  10,  1000, 01

– Which of these strings 1, 00, 10, 1000, 01 is
recognized by the following FSA?

S0 S1
1 0
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Example

• Description
– What language is generated by (01)+  | (10)+ ?

– What language is recognized by this FSA?

S0
S1 S2

0 1

0S3

S4

1

0

ε

1

What if we added 
the ε transition?
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Example
• Codification

– Complex constants are parenthesized pairs of
two integers

• Let digit  stand for (0|1|2|3|4|5|6|7|8|9).  Then the RE
is   ( digit + , digit + )

• FSA is:

digit digit
( ),S0 S2 S4 S5S1

digit digit
S3
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Nondeterministic FSAs

• Allow more than one transition with same
label

• Allow ε transition
e.g.,

DFSA:

NFSA:

(0 | 1) * 1 1 (0 | 1) *

A B

C
0 0

0,1

1 1

X Y

Z

0,1

1 1

0,1

start

start
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NFSAs
• Recognize a sentence in a language by

progressing from initial state to a final state
– Think of following many threads of computation

at same time; one must lead to a final state for a
recognition to occur

• class of languages recognizable by NFSAs is
SAME as class of languages recognizable by
DFSAs.

• There are algorithms to build NFSA directly
from RE
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Example

0 + | 0 1+  all binary numbers containing at least
one 0, in which all 0’s proceed all 1’s

S0 S1
S2

S3

0

00

1
1

start
DFSA:

NFSA:

S10 S11 S12

S13

0

0

1
1

start

0

Why doesn’t this NFSA work?

start

S20 S21

0

1

1
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RE to NFSA Construction

• Standardized translation for RE expressions
into corresponding NFSAs

• Can then translate resulting NFSA into a
corresponding DFSA which recognizes the
same language!

• All can be automated
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RE to NFSA

• For a in alphabet, construct:
• For ε, construct:

• For s,t REs, for s|t construct:

a

ε

start

N(s)

N(t)

ε

ε

ε

ε

e.g., 0|1

0

1

ε

ε

ε

ε
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RE to NFSA

• For s,t REs, for st construct:

• For RE s, s* construct:

0 1

ε

εε
ε

N(s)

N(s) N(t)

e.g., 01

ε

εε ε
e.g., 0*

0
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Example

• Build the NFSA for complex numbers using
this RE ( digit + , digit + ).

digit εε ε
digit

Note this is same as Kleene * machine
except for bottom ε transition

digit+
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Example

εε ε
digit

digit+ ,

εε ε
digit

εε ε
digit

,

,

digit+ , digit+
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Example
( digit+ , digit+ )

εε ε
digit

εε ε
digit

,(
)

Q: How can we make this NFSA 
efficient by converting it into a DFSA?
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NFSA to DFSA

S0 S1 S2

Idea:  look for sets of states with same transitions.
Let one state in the DFSA represent sets of states in the NFSA
S0 on c to {S0}
S0 on d to {S0,S1}
{S0,S1} on c to {S0}
{S0,S1} on d to {S0,S1,S2}
{S0,S1,S2} on c to {S0}
{S0,S1,S2} on d to {S0,S1,S2}

(c | d )* dd

d
c,d

d

d
c

{S0} {S0,S1}

c {S0,S1,S2}
d

c

d
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Backus Naur Form (BNF)

• Metasymbols <  >  ::= |
• Terminal symbols of the PL

– e.g., keywords, operators)

• Nonterminal symbols

<while_stmt> ::= while <expr> do <stmt>

<identifier> ::= <letter> | <identifier> <digit> |

<identifier> <letter>
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EBNF
• Nonterminals begin with capital letters or are

shown in a different font
• {…} means repeat the enclosed 0 or more times
• […] means the enclosed is optional
• (…) is used for grouping, usually with the

alternation symbol  |
• If { }, [ ], or ( ) are terminals in the PL being

defined, then when they are used as terminals they
must be underlined
– {  } terminals, {  }  metasymbols
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EBNF Examples

Identifier ::= Letter { LetterorDigit }

LetterorDigit ::= Letter | Digit
Expr ::= [ Expr  - ] Subexpr

IfStmt ::= if LogicExpr then Stmt [else Stmt]

CompoundStmt ::= begin Stmt {; Stmt} end

WhileStmt ::= while ( LogicExpr )  Stmt {; Stmt}
ArrayElement ::= Identifier [ Identifier ]
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Grammar

• <set of terminals, set of nonterminals,
productions (rules), special symbol>
– terminals are alphabet symbols

– nonterminals represent PL constructs (e.g., Stmt)
– productions are rules for forming syntactically

correct constructs
– special symbol tells where to start applying the

rules
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Example
<letter>::=

a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z
<digit>::= 0|1|2|3|4|5|6|7|8|9
<identifier> ::= <letter> | <identifier> <letter> |

<identifier> <digit>
<assign-stmt> ::= <identifier> = 0 //terminals;
//nonterminals are

{<letter><digit><assign_stmt><identifier>}
//special symbol is <assign-stmt>
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Regular PLs

• Form of rules
– Each rhs is length <= 2 symbols

• A terminal or nonterminal
• a nonterminal  followed by a terminal

• All PLs describable by REs can be written as
regular grammars
e.g.,1 2* | 0+ N::= X | Y

X ::= 1 | X 2

Y ::= 0 | Y 0


