
1

Formal Languages, CS314 Fall2001 © BGRyder 1

Formal Languages

• Regular expressions
• Finite state automata

– Deterministic

– Non-deterministic

• Review of BNF
• Introduction to Grammars

– Regular grammars

Formal Languages, CS314 Fall2001 © BGRyder 2

Formal Languages

• A way to describe difficulty of computation
problems formulated as language recognition
problems

• A mechanism to aid description of
programming language constructs
– Regular expressions - PL tokens (e.g., keywords)

– Finite state automata (FSAs)

2

Formal Languages, CS314 Fall2001 © BGRyder 3

Regular Expressions

• Formalism for describing simple PL
constructs
– reserved words

– identifiers
– numbers

• Simplest sort of structure
• Recognized by a finite state automaton
• Defined recursively

Formal Languages, CS314 Fall2001 © BGRyder 4

Formally
• PL is a set of strings (called sentences) over some

finite alphabet of symbols, called terminals
– Not necessarily a finite set

• Rules describe how to combine the terminals into
well-formed sentences in the PL

• PLs categorized by complexity of these rules
– BNF used to describe context-free languages, most PLs

fall in this category

3

Formal Languages, CS314 Fall2001 © BGRyder 5

Regular Expressions
PL construct RE Notation Language

an empty RE { }
symbol a a {a}
null symbol ε {ε}

R,S regular exprs R | S LR ∪LS

a,b terminals a|b (alternation) {a,b}

R,S regular exprs RS LRLS

a,b terminals ab (concatenation) {ab}

Formal Languages, CS314 Fall2001 © BGRyder 6

Regular Expressions

PL construct RE Notation Language

R,S regular exprs R* {ε }∪ LR ∪ LR LR ∪ LR LR LR …
a a* {ε ,a,aa,aaa,…}
R,S regular exprs R+ LR ∪ LR LR ∪ LR LR LR ...

a a+ {a,aa,aaa,…}
Note: ε a = a ε = a
Precedence is {* +} ----concatenation ---- |

high to low
(all are left associative operators)

4

Formal Languages, CS314 Fall2001 © BGRyder 7

RE Examples

1 | 2 {1,2}
1* | 2 {2, ε,1,11,111,…}

1 2* {1, 12, 122, 1222, …}

1 2* | 0+ {0,00,000,…,1,12,122,…}
(1 | 2)* {ε,1,2,12,11,21,22,…}

(0|1)* 1 Binary numbers that end in 1

Formal Languages, CS314 Fall2001 © BGRyder 8

RE’s for PLs

• Let letter stand for a|b|c|…|z and digit stand
for 0|1|2|3|4|5|6|7|8|9
– letter (letter | digit) * is identifier

– digit + is integer constant
– digit * . digit + is real number

• Which identifiers are described by
– letter (letter | digit) * ? ABC 0C B% X1

5

Formal Languages, CS314 Fall2001 © BGRyder 9

Examples

• Which of the following are legal real numbers
described by
– digit * . digit + ? .5 1.5 2 4. 6.3 0.2

• Can see that simple PL constructs can be
defined as regular expressions
– Can you define a number in scientific notation as

an RE?

Formal Languages, CS314 Fall2001 © BGRyder 10

Finite State Automaton (FSA)

• Recognizer of the language generated by a
regular expression

• Described by
<set of states, labelled transitions, start state, final state(s)>

S1

S2

S0 0

1
(1|0)

<{S0,S1,S2}, S0 ---> S1, S0, {S1,S2}>
 S0 ---> S2

0

1start

6

Formal Languages, CS314 Fall2001 © BGRyder 11

FSA

• FSA accepts or recognizes an input string iff
there is a path from its start state to a final
state such that the labels on the path are the
terminals in that string
– Empty transitions signify illegal moves; can think

of FSA going to a sink error state
 0 1
 S0 S1 S2
 S1 --- ---
 S2 --- ---

transition table

inputs:
states:

S1

S2

S0
0

1

start

Formal Languages, CS314 Fall2001 © BGRyder 12

Examples

Binary numbers containing a pair of adjacent
1’s: (0 | 1) * 1 1 (0 | 1) *

0

1

0

0

0, 1

1

1

S0 S1

S2
S3

 0 1
S0 S1 S2
S1 S1 S2
S2 S1 S3
S3 S3 S3

FSA1

start

7

Formal Languages, CS314 Fall2001 © BGRyder 13

An Equivalent FSA

A B

C

0 0
0,1

1 1

FSA2

FSA1 and FSA2 recognize the same set of strings of terminals,
the same language! Therefore FSAs are NOT UNIQUE.

start

Formal Languages, CS314 Fall2001 © BGRyder 14

Example

Exponent in scientific notation:
E (+ | -) digit + | E digit +

S0 S1 S2

S3

E +,- digit

digit

digit
start

8

Formal Languages, CS314 Fall2001 © BGRyder 15

Example

Binary numbers which begin and end with a 1,
1(0|1)*1

All binary numbers containing at least one
digit, where all their 1’s precede all their 0’s

0+ | 1+0*

S0 S1

S2

1 1
10

0

S0
S1

S2

0

0

01
1

start

start

Formal Languages, CS314 Fall2001 © BGRyder 16

Jobs for REs/FSAs

• Recognition
– Is this string in the language described (recognized) by

this RE (FSA)?

• Description
– Given an RE (FSA), what language does it generate

(recognize)?

• Codification
– Given a language, find an RE and FSA corresponding to it

9

Formal Languages, CS314 Fall2001 © BGRyder 17

Example

• Recognition
– Given 10*, which of these strings are described by

it? 1, 00, 10, 1000, 01

– Which of these strings 1, 00, 10, 1000, 01 is
recognized by the following FSA?

S0 S1
1 0

Formal Languages, CS314 Fall2001 © BGRyder 18

Example

• Description
– What language is generated by (01)+ | (10)+ ?

– What language is recognized by this FSA?

S0
S1 S2

0 1

0S3

S4

1

0

ε

1

What if we added
the ε transition?

10

Formal Languages, CS314 Fall2001 © BGRyder 19

Example
• Codification

– Complex constants are parenthesized pairs of
two integers

• Let digit stand for (0|1|2|3|4|5|6|7|8|9). Then the RE
is (digit + , digit +)

• FSA is:

digit digit
(),S0 S2 S4 S5S1

digit digit
S3

Formal Languages, CS314 Fall2001 © BGRyder 20

Nondeterministic FSAs

• Allow more than one transition with same
label

• Allow ε transition
e.g.,

DFSA:

NFSA:

(0 | 1) * 1 1 (0 | 1) *

A B

C
0 0

0,1

1 1

X Y

Z

0,1

1 1

0,1

start

start

11

Formal Languages, CS314 Fall2001 © BGRyder 21

NFSAs
• Recognize a sentence in a language by

progressing from initial state to a final state
– Think of following many threads of computation

at same time; one must lead to a final state for a
recognition to occur

• class of languages recognizable by NFSAs is
SAME as class of languages recognizable by
DFSAs.

• There are algorithms to build NFSA directly
from RE

Formal Languages, CS314 Fall2001 © BGRyder 22

Example

0 + | 0 1+ all binary numbers containing at least
one 0, in which all 0’s proceed all 1’s

S0 S1
S2

S3

0

00

1
1

start
DFSA:

NFSA:

S10 S11 S12

S13

0

0

1
1

start

0

Why doesn’t this NFSA work?

start

S20 S21

0

1

1

12

Formal Languages, CS314 Fall2001 © BGRyder 23

RE to NFSA Construction

• Standardized translation for RE expressions
into corresponding NFSAs

• Can then translate resulting NFSA into a
corresponding DFSA which recognizes the
same language!

• All can be automated

Formal Languages, CS314 Fall2001 © BGRyder 24

RE to NFSA

• For a in alphabet, construct:
• For ε, construct:

• For s,t REs, for s|t construct:

a

ε

start

N(s)

N(t)

ε

ε

ε

ε

e.g., 0|1

0

1

ε

ε

ε

ε

13

Formal Languages, CS314 Fall2001 © BGRyder 25

RE to NFSA

• For s,t REs, for st construct:

• For RE s, s* construct:

0 1

ε

εε
ε

N(s)

N(s) N(t)

e.g., 01

ε

εε ε
e.g., 0*

0

Formal Languages, CS314 Fall2001 © BGRyder 26

Example

• Build the NFSA for complex numbers using
this RE (digit + , digit +).

digit εε ε
digit

Note this is same as Kleene * machine
except for bottom ε transition

digit+

14

Formal Languages, CS314 Fall2001 © BGRyder 27

Example

εε ε
digit

digit+ ,

εε ε
digit

εε ε
digit

,

,

digit+ , digit+

Formal Languages, CS314 Fall2001 © BGRyder 28

Example
(digit+ , digit+)

εε ε
digit

εε ε
digit

,(
)

Q: How can we make this NFSA
efficient by converting it into a DFSA?

15

Formal Languages, CS314 Fall2001 © BGRyder 29

NFSA to DFSA

S0 S1 S2

Idea: look for sets of states with same transitions.
Let one state in the DFSA represent sets of states in the NFSA
S0 on c to {S0}
S0 on d to {S0,S1}
{S0,S1} on c to {S0}
{S0,S1} on d to {S0,S1,S2}
{S0,S1,S2} on c to {S0}
{S0,S1,S2} on d to {S0,S1,S2}

(c | d)* dd

d
c,d

d

d
c

{S0} {S0,S1}

c {S0,S1,S2}
d

c

d

Formal Languages, CS314 Fall2001 © BGRyder 30

Backus Naur Form (BNF)

• Metasymbols < > ::= |
• Terminal symbols of the PL

– e.g., keywords, operators)

• Nonterminal symbols

<while_stmt> ::= while <expr> do <stmt>

<identifier> ::= <letter> | <identifier> <digit> |

<identifier> <letter>

16

Formal Languages, CS314 Fall2001 © BGRyder 31

EBNF
• Nonterminals begin with capital letters or are

shown in a different font
• {…} means repeat the enclosed 0 or more times
• […] means the enclosed is optional
• (…) is used for grouping, usually with the

alternation symbol |
• If { }, [], or () are terminals in the PL being

defined, then when they are used as terminals they
must be underlined
– { } terminals, { } metasymbols

Formal Languages, CS314 Fall2001 © BGRyder 32

EBNF Examples

Identifier ::= Letter { LetterorDigit }

LetterorDigit ::= Letter | Digit
Expr ::= [Expr -] Subexpr

IfStmt ::= if LogicExpr then Stmt [else Stmt]

CompoundStmt ::= begin Stmt {; Stmt} end

WhileStmt ::= while (LogicExpr) Stmt {; Stmt}
ArrayElement ::= Identifier [Identifier]

17

Formal Languages, CS314 Fall2001 © BGRyder 33

Grammar

• <set of terminals, set of nonterminals,
productions (rules), special symbol>
– terminals are alphabet symbols

– nonterminals represent PL constructs (e.g., Stmt)
– productions are rules for forming syntactically

correct constructs
– special symbol tells where to start applying the

rules

Formal Languages, CS314 Fall2001 © BGRyder 34

Example
<letter>::=

a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z
<digit>::= 0|1|2|3|4|5|6|7|8|9
<identifier> ::= <letter> | <identifier> <letter> |

<identifier> <digit>
<assign-stmt> ::= <identifier> = 0 //terminals;
//nonterminals are

{<letter><digit><assign_stmt><identifier>}
//special symbol is <assign-stmt>

18

Formal Languages, CS314 Fall2001 © BGRyder 35

Regular PLs

• Form of rules
– Each rhs is length <= 2 symbols

• A terminal or nonterminal
• a nonterminal followed by a terminal

• All PLs describable by REs can be written as
regular grammars
e.g.,1 2* | 0+ N::= X | Y

X ::= 1 | X 2

Y ::= 0 | Y 0

