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Functional Programming

• Pure functional PLs
• S-expressions

– cons, car, cdr

• Defining functions
• read-eval-print loop of Lisp interpreter
• Examples of recursive functions

– Shallow, deep

• Equality testing
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Pure Functional Languages
• Referential transparency

– value of an expression is independent of context
where the function application occurs

– means that all variables in a function body must
be local to that function; why?

• There is no concept of assignment
– variables are bound to values only through

parameter associations

– no side effects
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Pure Functional Languages
• Control flow accomplished through function

application (and recursion)
– a program is a set of function definitions and their

application to arguments

• Implicit storage management
– copy semantics, needs garbage collection

• Functions are 1st class values!
– can be returned as value of an expression or

function application
– can  be passed as an argument
– can be put into a data structure and saved
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Pure Functional Languages
– Unnamed functions exist as values

• Lisp designed for symbolic computing
– simple syntax
– data and programs have same syntactic form

• S-expression

– function application written in prefix form
(e1  e2  e3 … ek) means
• Evaluate e1 to a function value
• Evaluate each of e2,…,ek to values
• Apply the function to these values
(+ 1 3) evaluates to 4
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History

Lisp
1950’s
John McCarthy

Scheme
1975
Guy Steele
Gerald Sussman

Common Lisp

dynamic scoping
lexical scoping
functions as first class values
continuations

standardized PL
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S-expressions

S-expr ::= Name | Number | ( { S-expr }  )
Name is a symbolic constant, some string of

chars which starts off with anything that can’t
start a Number

Number is an integer or real number
– E.g., (a (b c ) (d)) is an S-expr (or list)
– car selects the first element

• car  of this S-expr is a

– cdr selects the rest of the list
• cdr of this S-expr is ((b c) (d))

a

b
c ( )

d ( )
( )
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List Operators

• Car and cdr
– Given a list, they decompose it into first element,

rest of list portions

• Cons
– Given an element and a list, cons builds a new list

with the element as its car and the list as its cdr

• () means the empty list in Scheme
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Examples

(car  ‘(a b c)) is a

(car  ‘((a) b (c d))) is (a)
(cdr  ‘(a b c)) is (b c)

(cdr  ‘((a) b (c d))) is (b (c d))

Can compose these operators in a short-hand manner. Can reach any
arbitrary list element by composition of car’s and cdr’s.

(car (cdr (cdr ‘((a) b (c d)))))  =  can also be written (caddr ‘((a) b (c d)))
(car (cdr ‘( b (c d))) =

(car  ‘((c d )) = (c d).

a       ()

b

c 
d      () ()

((a) b (c d))
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Examples

(cons ‘(a b c)  ‘((a) b (c d))) is ((a b c) (a) b (c d))

(cons ‘d ‘(e)) is (d  e)
(cons ‘(a b) ‘(c d)) is ((a b) c d)

Useful predicates in Scheme.   Note the quote prevents evaluation of the
argument as an S-expr.

(symbol? ‘sam) returns #t   (symbol? 1) returns #f

(number? ‘sam) returns #f   (number?  1) returns #t
(list?  ‘(a b)) returns #t   (list? ‘a) returns #f

(null? ‘()) returns #t   (null? ‘(a b)) returns #f
(zero? 0) returns #t   (zero? 1) returns #f

Can compose these.

(zero? (-  3  3)) returns #t    note that since this language is fully parenthesized,
there are no precedence problems in the expressions!
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Scheme

Fcn-def ::= (define (Fcn-name {Param}) S-expr)
Fcn-name should be a new name for a fcn.
Param should be variable(s) that appear in the

S-expr which is the function body.
Fcn-def ::= ( define Fcn-name Fcn-value)
Fcn-value::= (lambda ( {Param} ) S-expr)
where Param variables are expected to appear

in the S-expr; called a lambda expression.
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Scheme Examples

( define (zerocheck? x)  (if (= x 0) #t #f) )
If-expr ::= (if  S-expr0   S-expr1  S-expr2)
where S-expr0 must evaluate to a boolean value; if that value is

true, then the If-expr returns the value of S-expr1, else the
value of S-expr2.

(zerocheck? 1) returns #f, (zerocheck? (* 1 0)) returns #t
( define (atom?  object) (not  (pair?  object)) )
where pair? returns #t if argument is non-trivial S-expr

(something you can take the cdr of), else returns #f

not  is a logical operator
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Scheme Examples

(define square (lambda (n) (*  n  n)) )

• This associates the Fcn-name square with the
function value (lambda (n)  (*  n  n)))

• Lambda calculus is a formal system for defining
recursive functions and their properties
– Set of functions definable using lambda calculus (Church

1941) is same as set of functions computable as Turning
Machines (Turing 1930’s)
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Trace of Evaluation

( define (atom?  object) (not  (pair?  object)) )
(atom? ‘(a))

-obtain function value corresponding to atom?

-evaluate ‘(a) obtaining (a)

-evaluate (not (pair? object))

-obtain function value corresponding to not

-evaluate (pair?  object)

-obtain function value corresponding to pair?

-evaluate object obtaining (a)

-return value #t

-return #f

-return #f
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Read-eval-print loop
• How does a Scheme interpreter work?

– Read input from user
• A function definition or abstraction
• A function evaluation

– Evaluate input
• Store function definition
• (e1 e2 e3 … ek)

– Evaluate e1 to obtain a function
– Evaluate e2, … , ek to values
– Execute function body using values from previous step as

formal parameter values
– Return value of function

– Print return value
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Conditional Execution

(if  e1  e2  e3)
(cond  (e1  h1) (e2  h2)…(en-1  hn-1) (else hn))
• Cond is like a nested if-then-elseif construct

(define (zerocheck? x)
(cond ((=  x  0)  #t)  (else  #f)))

OR
(define (zchk?  x)

(cond ((number? x) (zero? x))
(else #f)) )

Functional Programming, CS314 Fall 01©  BGRyder
16

Recursive Functions
(define (len x)  (cond ((null?  x)  0)  (else (+ 1 (len (cdr  x))))))
(len  ‘(1  2)) should yield 2.
Trace: (len ‘(1  2))  --top level call

x = (1  2)
(len ‘(2)) --recursive call 1
x = (2)

(len ‘( ) ) -- recursive call 2
x = ( )
returns 0 --return for call 2

returns (+  1  0) =1 --return for call 1
returns (+ 1  1) = 2 --return for top level call

(len ‘((a) b (c  d))) returns 3

len is a shallow
recursive function
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List Append

(define (app  x  y)
(cond  ((null?  x)  y)

    ((null?  y)  x)
    (else  (cons (car x)  (app (cdr x)  y)))))

(app ‘( )  ‘( ) ) yields ( )
(app ‘( )  ‘( 1 4 5)) yields (1 4  5)
(app ‘(5  9) ‘(a  (4)  6)) yields (5  9  a  (4)  6)
another shallow recursive function

• Can we write a function that counts the number of atoms in a
list? (this will have to be a deep function)
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Atomcount Function
(define  (atomcount  x)

(cond  ((null?  x)  0)
    ((atom? x)  1)
    (else  (+ (atomcount  (car x))  (atomcount  (cdr x)))) ))

(atomcount ‘(1)) yields 1
(atomcount  ‘(1 (2 (3)) (5)) )yields 4
Trace: (atomcount ‘(1 (2 (3)) )
1> (+   (atomcount 1) (atomcount ‘( (2 (3)) ) ))

2> (+ (atomcount ‘(2 (3)) ) (atomcount ‘( ) ) )
3> (+  (atomcount 2) (atomcount ‘((3)) ) etc.

4> (+ (atomcount ‘(3)) (atomcount ‘( )) )
5> (+ (atomcount 3) (atomcount ‘( )))

0
1

atomcount
is a deep 
recursive 
function
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Equality Testing
eq?

– predicate that can check atoms for equal values
– doesn’t work on lists

eql?
– comparison function for lists
(define (eql?  x  y)

(or  (and (atom?  x) (atom? y) (eq?  x  y))
      (and  (not (atom? x)) (not (atom? y))

     (eql?  (car x)  (car y))
     (eql?  (cdr x)  (cdr y)) ))
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Examples

(eql?  ‘(a)  ‘(a))  yields #t
(eql?  ‘a  ‘b) yields #f
(eql?  ‘b  ‘b)  yields #t
(eql?  ‘((a)) ‘(a)) yields #f

(eq?  ‘a  ‘a)  yields #t
(eq?  ‘(a)  ‘(a)) yields #f
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How does eq? work?
(define (f  x   y)  (list x  y))
so (f  ‘a  ‘a) yields (a  a).
How does Scheme implement this?

It binds both x and y to the same atom a.
eq? checks that x and y both point to the

same place

Say we called (f  ‘(a)  ‘(a)). then x and y
don’t point to the same list at all!

x

y
a

x

y
( )a

the atom: a

the arguments: (a)


