
1

Functional Programming, CS314 Fall 01© BGRyder
1

Functional Programming

• Pure functional PLs
• S-expressions

– cons, car, cdr

• Defining functions
• read-eval-print loop of Lisp interpreter
• Examples of recursive functions

– Shallow, deep

• Equality testing

Functional Programming, CS314 Fall 01© BGRyder
2

Pure Functional Languages
• Referential transparency

– value of an expression is independent of context
where the function application occurs

– means that all variables in a function body must
be local to that function; why?

• There is no concept of assignment
– variables are bound to values only through

parameter associations

– no side effects

2

Functional Programming, CS314 Fall 01© BGRyder
3

Pure Functional Languages
• Control flow accomplished through function

application (and recursion)
– a program is a set of function definitions and their

application to arguments

• Implicit storage management
– copy semantics, needs garbage collection

• Functions are 1st class values!
– can be returned as value of an expression or

function application
– can be passed as an argument
– can be put into a data structure and saved

Functional Programming, CS314 Fall 01© BGRyder
4

Pure Functional Languages
– Unnamed functions exist as values

• Lisp designed for symbolic computing
– simple syntax
– data and programs have same syntactic form

• S-expression

– function application written in prefix form
(e1 e2 e3 … ek) means
• Evaluate e1 to a function value
• Evaluate each of e2,…,ek to values
• Apply the function to these values
(+ 1 3) evaluates to 4

3

Functional Programming, CS314 Fall 01© BGRyder
5

History

Lisp
1950’s
John McCarthy

Scheme
1975
Guy Steele
Gerald Sussman

Common Lisp

dynamic scoping
lexical scoping
functions as first class values
continuations

standardized PL

Functional Programming, CS314 Fall 01© BGRyder
6

S-expressions

S-expr ::= Name | Number | ({ S-expr })
Name is a symbolic constant, some string of

chars which starts off with anything that can’t
start a Number

Number is an integer or real number
– E.g., (a (b c) (d)) is an S-expr (or list)
– car selects the first element

• car of this S-expr is a

– cdr selects the rest of the list
• cdr of this S-expr is ((b c) (d))

a

b
c ()

d ()
()

4

Functional Programming, CS314 Fall 01© BGRyder
7

List Operators

• Car and cdr
– Given a list, they decompose it into first element,

rest of list portions

• Cons
– Given an element and a list, cons builds a new list

with the element as its car and the list as its cdr

• () means the empty list in Scheme

Functional Programming, CS314 Fall 01© BGRyder
8

Examples

(car ‘(a b c)) is a

(car ‘((a) b (c d))) is (a)
(cdr ‘(a b c)) is (b c)

(cdr ‘((a) b (c d))) is (b (c d))

Can compose these operators in a short-hand manner. Can reach any
arbitrary list element by composition of car’s and cdr’s.

(car (cdr (cdr ‘((a) b (c d))))) = can also be written (caddr ‘((a) b (c d)))
(car (cdr ‘(b (c d))) =

(car ‘((c d)) = (c d).

a ()

b

c
d () ()

((a) b (c d))

5

Functional Programming, CS314 Fall 01© BGRyder
9

Examples

(cons ‘(a b c) ‘((a) b (c d))) is ((a b c) (a) b (c d))

(cons ‘d ‘(e)) is (d e)
(cons ‘(a b) ‘(c d)) is ((a b) c d)

Useful predicates in Scheme. Note the quote prevents evaluation of the
argument as an S-expr.

(symbol? ‘sam) returns #t (symbol? 1) returns #f

(number? ‘sam) returns #f (number? 1) returns #t
(list? ‘(a b)) returns #t (list? ‘a) returns #f

(null? ‘()) returns #t (null? ‘(a b)) returns #f
(zero? 0) returns #t (zero? 1) returns #f

Can compose these.

(zero? (- 3 3)) returns #t note that since this language is fully parenthesized,
there are no precedence problems in the expressions!

Functional Programming, CS314 Fall 01© BGRyder
10

Scheme

Fcn-def ::= (define (Fcn-name {Param}) S-expr)
Fcn-name should be a new name for a fcn.
Param should be variable(s) that appear in the

S-expr which is the function body.
Fcn-def ::= (define Fcn-name Fcn-value)
Fcn-value::= (lambda ({Param}) S-expr)
where Param variables are expected to appear

in the S-expr; called a lambda expression.

6

Functional Programming, CS314 Fall 01© BGRyder
11

Scheme Examples

(define (zerocheck? x) (if (= x 0) #t #f))
If-expr ::= (if S-expr0 S-expr1 S-expr2)
where S-expr0 must evaluate to a boolean value; if that value is

true, then the If-expr returns the value of S-expr1, else the
value of S-expr2.

(zerocheck? 1) returns #f, (zerocheck? (* 1 0)) returns #t
(define (atom? object) (not (pair? object)))
where pair? returns #t if argument is non-trivial S-expr

(something you can take the cdr of), else returns #f

not is a logical operator

Functional Programming, CS314 Fall 01© BGRyder
12

Scheme Examples

(define square (lambda (n) (* n n)))

• This associates the Fcn-name square with the
function value (lambda (n) (* n n)))

• Lambda calculus is a formal system for defining
recursive functions and their properties
– Set of functions definable using lambda calculus (Church

1941) is same as set of functions computable as Turning
Machines (Turing 1930’s)

7

Functional Programming, CS314 Fall 01© BGRyder
13

Trace of Evaluation

(define (atom? object) (not (pair? object)))
(atom? ‘(a))

-obtain function value corresponding to atom?

-evaluate ‘(a) obtaining (a)

-evaluate (not (pair? object))

-obtain function value corresponding to not

-evaluate (pair? object)

-obtain function value corresponding to pair?

-evaluate object obtaining (a)

-return value #t

-return #f

-return #f

Functional Programming, CS314 Fall 01© BGRyder
14

Read-eval-print loop
• How does a Scheme interpreter work?

– Read input from user
• A function definition or abstraction
• A function evaluation

– Evaluate input
• Store function definition
• (e1 e2 e3 … ek)

– Evaluate e1 to obtain a function
– Evaluate e2, … , ek to values
– Execute function body using values from previous step as

formal parameter values
– Return value of function

– Print return value

8

Functional Programming, CS314 Fall 01© BGRyder
15

Conditional Execution

(if e1 e2 e3)
(cond (e1 h1) (e2 h2)…(en-1 hn-1) (else hn))
• Cond is like a nested if-then-elseif construct

(define (zerocheck? x)
(cond ((= x 0) #t) (else #f)))

OR
(define (zchk? x)

(cond ((number? x) (zero? x))
(else #f)))

Functional Programming, CS314 Fall 01© BGRyder
16

Recursive Functions
(define (len x) (cond ((null? x) 0) (else (+ 1 (len (cdr x))))))
(len ‘(1 2)) should yield 2.
Trace: (len ‘(1 2)) --top level call

x = (1 2)
(len ‘(2)) --recursive call 1
x = (2)

(len ‘()) -- recursive call 2
x = ()
returns 0 --return for call 2

returns (+ 1 0) =1 --return for call 1
returns (+ 1 1) = 2 --return for top level call

(len ‘((a) b (c d))) returns 3

len is a shallow
recursive function

9

Functional Programming, CS314 Fall 01© BGRyder
17

List Append

(define (app x y)
(cond ((null? x) y)

 ((null? y) x)
 (else (cons (car x) (app (cdr x) y)))))

(app ‘() ‘()) yields ()
(app ‘() ‘(1 4 5)) yields (1 4 5)
(app ‘(5 9) ‘(a (4) 6)) yields (5 9 a (4) 6)
another shallow recursive function

• Can we write a function that counts the number of atoms in a
list? (this will have to be a deep function)

Functional Programming, CS314 Fall 01© BGRyder
18

Atomcount Function
(define (atomcount x)

(cond ((null? x) 0)
 ((atom? x) 1)
 (else (+ (atomcount (car x)) (atomcount (cdr x))))))

(atomcount ‘(1)) yields 1
(atomcount ‘(1 (2 (3)) (5)))yields 4
Trace: (atomcount ‘(1 (2 (3)))
1> (+ (atomcount 1) (atomcount ‘((2 (3)))))

2> (+ (atomcount ‘(2 (3))) (atomcount ‘()))
3> (+ (atomcount 2) (atomcount ‘((3))) etc.

4> (+ (atomcount ‘(3)) (atomcount ‘()))
5> (+ (atomcount 3) (atomcount ‘()))

0
1

atomcount
is a deep
recursive
function

10

Functional Programming, CS314 Fall 01© BGRyder
19

Equality Testing
eq?

– predicate that can check atoms for equal values
– doesn’t work on lists

eql?
– comparison function for lists
(define (eql? x y)

(or (and (atom? x) (atom? y) (eq? x y))
 (and (not (atom? x)) (not (atom? y))

 (eql? (car x) (car y))
 (eql? (cdr x) (cdr y))))

Functional Programming, CS314 Fall 01© BGRyder
20

Examples

(eql? ‘(a) ‘(a)) yields #t
(eql? ‘a ‘b) yields #f
(eql? ‘b ‘b) yields #t
(eql? ‘((a)) ‘(a)) yields #f

(eq? ‘a ‘a) yields #t
(eq? ‘(a) ‘(a)) yields #f

11

Functional Programming, CS314 Fall 01© BGRyder
21

How does eq? work?
(define (f x y) (list x y))
so (f ‘a ‘a) yields (a a).
How does Scheme implement this?

It binds both x and y to the same atom a.
eq? checks that x and y both point to the

same place

Say we called (f ‘(a) ‘(a)). then x and y
don’t point to the same list at all!

x

y
a

x

y
()a

the atom: a

the arguments: (a)

