
1

Functional Programming-2, CS314 Fall 01© BGRyder 1

Functional Programming - 2

• Higher Order Functions
– E.g., map, reduce

– apply and eval

• Lexical scoping with let’s
• Closures
• Currying

Functional Programming-2, CS314 Fall 01© BGRyder 2

Higher Order Functions
• Functions as 1st class values
• Functions as arguments

(define (f g x) (g x))
(f number? 0) yields #t
(f len ‘(1 (2 3))) yields 2
(f (lambda (x) (* 2 x)) 3) yields 6

• Functions as return values
(define incr (lambda (n) (+ 1 n)))

(incr 1) returns 2,
incr returns #<closure () (lambda (n) (+ 1 n)>

2

Functional Programming-2, CS314 Fall 01© BGRyder 3

map

• Higher order function used to apply another
function to every element of a list

• Takes 2 arguments a function f and a list ys
and builds a new list by applying the function
to every element of the (argument) list

(define (map f ys) (if (null? ys) ‘()
(cons (f (car ys)) (map f (cdr ys))))))

(map abs ‘(-1 2 -3 -4)) returns (1 2 3 4)
(map (lambda (x) (+ 1 x)) ‘(1 2 3)) returns (2 3 4)
(map + ‘(1 2 3) ‘(4 5 6)) returns (5 7 9)

Functional Programming-2, CS314 Fall 01© BGRyder 4

How map works?

(define (map f ys) (if (null? ys) ‘()
(cons (f (car ys)) (map f (cdr ys))))))

TRACE of execution:

(map abs ‘(-1 2 -3)
(cons (abs -1) (map abs (2 -3)))

(cons (abs 2) (map abs (-3)))
(cons (abs -3) (map abs ‘())

‘()
(3)

(2 3)
(1 2 3)

3

Functional Programming-2, CS314 Fall 01© BGRyder 5

Using map
Define atomcnt3 which uses map to calculate the number of atoms in a list.

atomcnt3 creates a list of the count of atoms in every sublist and apply of
+ calculates the sublist sum.

(define (atomcnt3 s) (cond ((atom? s) 1)

 (else (apply + (map atomcnt3 s)))))

(atomcnt3 ‘(1 2 3)) returns 3
(atomcnt3 ‘((a b) d)) returns 3

(atomcnt3 ‘(1 ((2) 3) (((3) (2) 1)))) returns 6

How does this function work?

Functional Programming-2, CS314 Fall 01© BGRyder 6

apply

apply is a built-in function whose first argument f is a
function and whose second argument ll is a list of
arguments for that function

evaluation of apply applies f to ll

(apply + ‘(1 2 3)) returns 6
(apply zero? 2) returns #f
(apply (lambda (n) (+ 1 n)) ‘(3)) returns 4

The power of apply is that it lets your program build an S-
expression to evaluate during execution, and then lets it be
evaluated.

4

Functional Programming-2, CS314 Fall 01© BGRyder 7

eval

eval takes an S-expression and evaluates it (as
though it was a program)
(define (atomcnt2 s)

(cond ((null? s) 0)
((atom? s) 1)

(else (eval (cons ‘+ (map atomcnt2 s))))))

Note similarity in usage of apply and eval

Functional Programming-2, CS314 Fall 01© BGRyder 8

reduce
• Higher order function that takes a binary,

associative operation and uses it to “roll-up”
a list
(define (reduce op ys id)

(if (null? ys) id
(op (car ys) (reduce op (cdr ys) id))))

(reduce + ‘(10 20 30) 0) yields
(+ 10 (reduce + (20 30) 0))
(+ 10 (+ 20 (reduce + (30) 0)))
(+ 10 (+ 20 (+ 30 (reduce + () 0))))
(+ 10 (+ 20 (+ 30 (+ 0)))) yields 60

5

Functional Programming-2, CS314 Fall 01© BGRyder 9

The Power of Higher Order

• Can compose higher order functions to form
compact powerful functions

(define (sum f ys) (reduce + (map f ys) 0))
• sum takes a function f and a list ys
• sum applies f to each element of the list and then sums the

results
(sum (lambda (x) (* 2 x)) ‘(1 2 3)) yields 12
(sum square ‘(2 3)) yields 13

Functional Programming-2, CS314 Fall 01© BGRyder 10

Using reduce
(reduce app ‘((1 2) (3 4)) ‘()) yields

(app ‘(1 2) (reduce app ‘((3 4)) ‘()))
 (app ‘(3 4) (reduce app ‘() ‘()))

‘()
 (3 4)

(1 2 3 4)
> (reduce append '((1 2) (3 4)) '()) trace on remus of this evaluation

 "CALLED" reduce #[proc] ((1 ...) (3 4)) ()

 "CALLED" reduce #[proc] ((3 4)) ()

 "CALLED" reduce #[proc] () ()

 "RETURNED" reduce ()

 "RETURNED" reduce (3 4)

 "RETURNED" reduce (1 2 3 4)

;Evaluation took 0 mSec (0 in gc) 1513 cells work, 103 bytes other

(1 2 3 4)

6

Functional Programming-2, CS314 Fall 01© BGRyder 11

Using reduce
Defining len (list length function) from reduce.
(define (len z) (reduce (lambda (x y) (+ 1 y)) z 0))
> (trace len)
> (trace reduce)
>(len '(1 2 3))
"CALLED" len (1 2 3)
 "CALLED" reduce #[proc] (1 2 3) 0
 "CALLED" reduce #[proc] (2 3) 0
 "CALLED" reduce #[proc] (3) 0
 "CALLED" reduce #[proc] () 0
 "RETURNED" reduce 0
 "RETURNED" reduce 1
 "RETURNED" reduce 2
 "RETURNED" reduce 3
"RETURNED" len 3
;Evaluation took 10 mSec (0 in gc) 2002 cells work, 137 bytes other
3

Functional Programming-2, CS314 Fall 01© BGRyder 12

Trace of len

(len '(1 2 3)) is

(reduce (lambda (x y) (+ 1 y)) ‘(1 2 3) 0))
((lambda (x y) (+ 1 y)) 1 (reduce (lambda (x y) (+ 1 y)) ‘(2 3) 0))

((lambda…) 2 (reduce (lamb…) ‘(3) 0))
((lamb.. 3) (reduce (lamb…) ‘() 0))

0
“((lambda (x y) (+ 1 y)) 3 0)” yields 1

((lambda (x y) (+ 1 y)) 2 1) yields 2
((lambda (x y) (+ 1 y)) 1 2) yields 3

3

7

Functional Programming-2, CS314 Fall 01© BGRyder 13

Let expressions

Let-expr ::= (let (Binding-list) S-expr1)
Let*-expr ::= (let* (Binding-list) S-expr)
Binding-list ::= (Var S-expr) { (Var S-expr) }

• Let and Let* expressions define a binding between each Var
and the S-expr value, which holds during execution of S-
expr1

• Let evaluates the S-expr’s in parallel; Let* evaluates them
from left to right.

• Both used to associate temporary values with variables for a
local computation

• Follow lexical scoping rules

Functional Programming-2, CS314 Fall 01© BGRyder 14

Let examples
 (let ((x 2)) (* x x)) yields 4

(let ((x 2)) (let (y 1) (+ x y))) yields 3
(let ((x 10) (y (* 2 x)) (* x y)) is an error because all exprs evaluated in

parallel and simultaneously bound to the vars

(let* ((x 10) (y (* 2 x)) (* x y)) yields 200

(let ((x 10)) ;causes x to be bound to 10
 (let ((f (lambda (a) (+ a x))) ;causes f to bound to lambda expr

 (let ((x 2)) (f 5))))
Evaluation yields (+ 5 10) = 15, NOT (+ 5 2) = 7

In dynamic scoping the answer would be 7!

(define (f z) (let* ((x 5) (f (lambda (z) (* x z)))) (map f z)))
What does this function do?

8

Functional Programming-2, CS314 Fall 01© BGRyder 15

Closures

• A closure is a function value plus the
environment in which it is to be evaluated
– Sometimes need to include variables not local to

the function so closure can eventually be
evaluated

• A closure can be used as a function
– Applied to arguments

– Passed as an argument

– Returned as a value

Functional Programming-2, CS314 Fall 01© BGRyder 16

Evaluation of Closures

 (define (gg z)

 (let* ((x 2) (f (lambda(y) (+ x y)))) (map f z)))
gg is actually a closure which is (lambda (z) (map f z)) where
the defining environment is { x → 2; f → (lambda (y) (+ x y))}

we need this environment to evaluate gg.

>(square 2)
4 ; is assumed to be evaluated in the context of the empty environment {}

>(gg ‘(1 2 3))
1. value of gg is its closure

2. closure environment is expanded by argument association with parameter
{ x → 2; f → (lambda (y) (+ x y)); z → ‘(1 2 3) }

3. evaluation occurs and (3 4 5) is returned

9

Functional Programming-2, CS314 Fall 01© BGRyder 17

More on Closures

>(define ff (lambda (x) (* 2 x))) ;binds ff to a closure

>ff ; can’ t see the closure ff is bound to
#<CLOSURE (x) (* 2 x)>

>(ff 3) ;evaluation in empty environment {}
6

>(ff) ; error, can’t evaluate a closure without its arguments

similarly, if you define a function with 2 arguments, you need to evaluate it
on both arguments! can we do better? yes

Currying allows us to build functions from partial evaluation of other
functions!

Functional Programming-2, CS314 Fall 01© BGRyder 18

Currying
>(define (mm x y) (* x y))

>mm ; returns a closure
>(mm 2) ; returns error because mm expects 2 arguments, not 1!

>(mm 2 3) ; returns 6
(define hh (lambda (x) (lambda (y) (* x y))))

> hh ; closure is value returned
#<CLOSURE (x) (lambda (y) (* x y))> ; closure returned

> (hh 2)
#<CLOSURE (y) (* x y)>

> ((hh 5) 3) ; note how have to give arguments to a curried function
15 ;one by one

> ((hh 2) 3) ; with first argument 5, (hh 5) is the 5 times function
6 ;with first argument of 2, (hh 2) is the 2 times function

10

Functional Programming-2, CS314 Fall 01© BGRyder 19

Currying

• What’s going on?
– We are reducing n-ary functions to n

applications of unary functions

– Can always do this, so n-ary functions don’t add
more power to your language

+ : R x R → R, curried+ : R → (R → R)

 (define (curried+ x) (lambda (y) (+ x y)))
 ((curried+ 2) 3) yields 5
 (let ((f (curried+ 1))) (f 4)) yields 5

