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Functional Programming - 2

• Higher Order Functions
– E.g., map, reduce

– apply and eval

• Lexical scoping with let’s
• Closures
• Currying
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Higher Order Functions
• Functions as 1st class values
• Functions as arguments

(define (f  g  x) (g  x))
(f   number?   0) yields #t
(f   len  ‘(1 (2 3)) ) yields 2
(f   (lambda (x) (* 2  x))  3) yields 6

• Functions as return values
(define incr (lambda (n) (+ 1 n)) )

(incr  1) returns 2,
incr returns #<closure () (lambda (n) (+ 1  n )>
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map

• Higher order function used to apply another
function to every element of a list

• Takes 2 arguments a function f and a list ys
and builds a new list by applying the function
to every element of the (argument) list

(define (map f  ys) (if (null? ys) ‘( )
(cons (f (car ys)) (map f (cdr ys))))))

(map  abs ‘(-1 2 -3 -4)) returns (1 2 3 4)
(map (lambda (x) (+ 1 x)) ‘(1 2 3)) returns (2 3 4)
(map + ‘(1 2 3) ‘(4 5 6)) returns (5 7 9)
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How map works?

(define (map f  ys) (if (null? ys) ‘( )
(cons (f (car ys)) (map f (cdr ys))))))

TRACE of execution:

(map abs ‘( -1  2  -3)
(cons (abs  -1) (map  abs (2 -3)))

(cons (abs  2) (map abs (-3)))
(cons (abs -3) (map abs ‘())

‘()
(3)

(2 3)
(1 2 3)
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Using map
Define atomcnt3 which uses map to calculate the number of atoms in a list.

atomcnt3  creates a list of the count of atoms in every sublist and apply of
+ calculates the sublist sum.

(define (atomcnt3 s) (cond ((atom? s) 1)

      (else (apply   + (map atomcnt3 s)))))

(atomcnt3  ‘(1 2 3)) returns 3
(atomcnt3 ‘((a b) d)) returns 3

(atomcnt3 ‘(1 ((2) 3) (((3) (2) 1)))) returns 6

How does this function work?
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apply

apply is a built-in function whose first argument f is a
function and whose second argument ll is a list of
arguments for that function

evaluation of apply applies f to ll

(apply + ‘(1 2 3)) returns 6
(apply  zero?  2) returns #f
(apply  (lambda (n) (+ 1 n)) ‘(3)) returns 4

The power of apply is that it lets your program build an S-
expression to evaluate during execution, and then lets it be
evaluated.
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eval

eval takes an S-expression and evaluates it (as
though it was a program)
(define (atomcnt2 s)

(cond ((null? s) 0)
((atom? s) 1)

(else (eval (cons ‘+ (map atomcnt2 s))))))

Note similarity in usage of apply and eval

Functional Programming-2, CS314 Fall 01©  BGRyder 8

reduce
• Higher order function that takes a binary,

associative operation and uses it to “roll-up”
a list
(define (reduce op ys id)

(if (null? ys)  id
(op (car ys) (reduce op (cdr ys) id))  ))

(reduce + ‘(10 20 30) 0) yields
(+ 10 (reduce + (20 30) 0) )
(+ 10  (+ 20 (reduce + (30) 0) ))
(+ 10  (+ 20  (+ 30 (reduce + () 0))))
(+ 10 (+ 20 (+ 30 (+ 0))))  yields 60
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The Power of Higher Order

• Can compose higher order functions to form
compact powerful functions

(define (sum   f   ys) (reduce  + (map  f ys) 0))
• sum  takes a function f and a list ys
• sum applies f to each element of the list and then sums the

results
(sum (lambda (x) (* 2 x)) ‘(1 2 3)) yields 12
(sum square ‘(2 3)) yields 13
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Using reduce
(reduce app ‘((1 2) (3 4)) ‘( ) ) yields

(app ‘(1 2) (reduce app ‘((3 4)) ‘( ) ) )
          (app ‘(3 4) (reduce app ‘( ) ‘( ) ))

‘( )
           (3 4)

(1 2 3 4)
> (reduce append '((1 2) (3 4)) '() ) trace on remus of this evaluation

 "CALLED" reduce #[proc] ((1 ...) (3 4)) ()

  "CALLED" reduce #[proc] ((3 4)) ()

   "CALLED" reduce #[proc] () ()

   "RETURNED" reduce ()

  "RETURNED" reduce (3 4)

 "RETURNED" reduce (1 2 3 4)

;Evaluation took 0 mSec (0 in gc) 1513 cells work, 103 bytes other

(1 2 3 4)
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Using reduce
Defining len (list length function) from reduce.
(define (len z) (reduce (lambda (x  y) (+ 1 y))  z   0))
> (trace len)
> (trace reduce)
>(len '(1 2 3))
"CALLED" len (1 2 3)
 "CALLED" reduce #[proc] (1 2 3) 0
  "CALLED" reduce #[proc] (2 3) 0
   "CALLED" reduce #[proc] (3) 0
    "CALLED" reduce #[proc] () 0
    "RETURNED" reduce 0
   "RETURNED" reduce 1
  "RETURNED" reduce 2
 "RETURNED" reduce 3
"RETURNED" len 3
;Evaluation took 10 mSec (0 in gc) 2002 cells work, 137 bytes other
3
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Trace of len

(len '(1 2 3)) is

(reduce (lambda (x  y) (+ 1 y))  ‘(1 2 3)   0))
( (lambda (x y) (+ 1 y)) 1 (reduce (lambda (x y) (+ 1 y)) ‘(2 3) 0) )

( (lambda…) 2 (reduce (lamb…) ‘(3) 0) )
( (lamb.. 3) (reduce (lamb…) ‘( ) 0) )

0
“( (lambda (x y) (+ 1 y)) 3 0)” yields 1

((lambda (x y) (+ 1 y)) 2 1) yields 2
( (lambda (x y) (+ 1 y)) 1 2) yields 3

3
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Let expressions

Let-expr ::= ( let  ( Binding-list )  S-expr1 )
Let*-expr ::=  ( let*  ( Binding-list )  S-expr )
Binding-list ::=  ( Var  S-expr) { (Var  S-expr)  }

• Let and Let* expressions define a binding between each Var
and the S-expr value, which holds during execution of S-
expr1

• Let evaluates the S-expr’s in parallel; Let* evaluates them
from left to right.

• Both used to associate temporary values with variables for a
local computation

• Follow lexical scoping rules
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Let examples
  (let ((x 2)) (* x x)) yields 4

(let ((x 2)) (let (y 1) (+ x y) ) ) yields 3
(let ((x 10) (y (* 2 x)) (* x y)) is an error because all exprs evaluated in

parallel and simultaneously bound to the vars

(let* ((x 10) (y (* 2 x)) (* x y)) yields 200

(let  ((x  10)) ;causes x to be bound to 10
      (let   ((f (lambda (a) (+ a  x)))  ;causes f to bound to lambda expr

          (let ((x  2)) (f  5) ) ) )
Evaluation yields (+ 5 10) = 15, NOT (+ 5  2) = 7

In dynamic scoping the answer would be 7!

(define (f  z) (let* ((x 5) (f (lambda (z) (* x  z)))) (map   f  z)))
What does this function do?
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Closures

• A closure is a function value plus the
environment in which it is to be evaluated
– Sometimes need to include variables not local to

the function so closure can eventually be
evaluated

• A closure can be used as a function
– Applied to arguments

– Passed as an argument

– Returned as a value
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Evaluation of Closures

 (define (gg   z)

  (let* ((x   2) (f  (lambda(y) (+ x y)))) (map  f  z)))
gg is actually a closure which is (lambda (z) (map  f  z)) where
the defining environment is { x → 2; f → (lambda (y) (+ x y))}

we need this environment to evaluate gg.

>(square 2)
4 ; is assumed to be evaluated in the context of the empty environment {}

>(gg  ‘(1 2 3 ))
1. value of gg is its closure

2. closure environment is expanded by argument association with parameter
{ x → 2; f → (lambda (y) (+ x y)); z → ‘(1 2 3) }

3. evaluation occurs and (3 4 5) is returned
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More on Closures

>(define ff (lambda (x) (* 2  x)))  ;binds ff to a closure

>ff  ; can’ t see the closure ff is bound to
#<CLOSURE (x) (* 2 x)>

>(ff  3)  ;evaluation in empty environment {}
6

>( ff )  ; error, can’t evaluate a closure without its arguments

similarly, if you define a function with 2 arguments, you need to evaluate it
on both arguments! can we do better? yes

Currying allows us to build functions from partial evaluation of other
functions!
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Currying
>(define (mm x  y) (* x  y))

>mm ; returns a closure
>(mm 2)  ; returns error because mm expects 2 arguments, not 1!

>(mm 2 3) ; returns 6
(define hh (lambda (x) (lambda (y) (* x y) )))

> hh ; closure is value returned
#<CLOSURE (x) (lambda (y) (* x y))> ; closure returned

> (hh 2)
#<CLOSURE (y) (* x y)>

> ((hh 5 ) 3) ; note how have to give arguments to a curried function
15        ;one by one

> ((hh 2) 3)  ; with first argument 5, (hh 5) is the 5 times function
6        ;with first argument of 2, (hh 2) is the 2 times function
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Currying

• What’s going on?
– We are reducing n-ary functions to n

applications of unary functions

– Can always do this, so n-ary functions don’t add
more power to your language

+ : R x R → R, curried+ : R → (R → R)

 (define (curried+ x) (lambda (y) (+ x y)))
     ((curried+ 2)  3) yields 5
     (let ((f (curried+ 1) )) (f 4))  yields 5


