Prolog -2

Negation by failure

Lists

— Unifying lists

Functionson lists

— Member_of()

— Don’t carevariables

Prolog sear ch trees + traces

Prolog-2, CS314 Fall 01© BGRyder

Review of Prolog

L anguage constructs

— facts, rules, queries

L ogic programming Prolog
Non-deterministic rule order/subgoal order

Separation of logic (what) from control (how)

Horn clauses
— How variables are bound to values

Goal-oriented semantics
Recursiverules
Negation asfailure

Prolog-2, CS314 Fall 01© BGRyder

Negation by Failure, revisited

not(X) :- X, !, fail.
not(_)

If X succeedsin first rule, then the goal fails
because of thelast term.

if wetype“;” thecut (!) will prevent us
from backtracklng over it or trying the
Sﬁco?dlrulesotherels no way to undue
the Tal

if X failsin thefirst rule, then the goal fails
because subgoal X fails. the system tries
the second rule which succeeds, since® "
unifieswith anything.

Prolog-2, CS314 Fall 01© BGRyder

Negation by Failure

» Not equivalent to logical notin Prolog
— Prolog can only assert that something istrue

— Prolog cannot assert that something isfalse, but
only that it cannot be proven with the given rules

Prolog-2, CS314 Fall 01© BGRyder

Prolog Syntax

* Names come from first order logic
a(Xx,Y) :- b (c(Y)), integer (X).

— Predicates/ar e evaluated
— Functorswith terms are unified

— Call thisaclauseor rule
cf. “ Computing with Logic”, D. Warren and D. Meyers

Prolog-2, CS314 Fall 01© BGRyder 5

Lists

list head tall 4
[a, b, C] a [b, c] b
[X [cat], V] X [[cat],Y] © (]
[a,[b, c],d a [[b,c],d]
[X] Y] X Y a
alist consists of a sequence of terms P,

C

Prolog-2, CS314 Fall 01© BGRyder 6

Unifying Lists

[X,Y,Z] =]john, likes, fish]
X = john, Y = likes, Z = fish
[cat] = [X | V]
X ==cat, ¥ =11
[[the, Y] | Z] = [X, hare] | [is here]
]
X = the, Y = hare, Z = [is here]
[1] 2] versus [1, 2]

A\ SN

1 2 2 []

Prolog-2, CS314 Fall 01© BGRyder

Lists

» Sequence of elements separated by
commas, or
o [first element |rest_of list]

—sort of “[car(list) | cdr(list)]” notation
[[the | YI | 2] = [X hare] | [is, here]]

P \
the @' lig 1
! /

Prolog-2, CS314 Fall 016 BGRyder hare [] il S g

Lists
[X, abc, Y] =? [X, abc | Y]

thereisno value binding for Y, to make these
two treesisomor phic.

Y []

Y

Prolog-2, CS314 Fall 01© BGRyder

Lists _
don't care variable
unifies with anything

[ab| Z =2 [X| Y]
X=a,Y=[b]2],2=_ _/
look at the treesto seewhy thisworks!
[a b, c] =[X] V]

X =a, Y = [b,c]

no

t'sbetter to stick to head and tail form of
Prolog lists -- it’sless confusing!

Prolog-2, CS314 Fall 01© BGRyder 10

Member of Function

menber (A, [AB]).

menber (A, [B|C]) :- nenber (A O).

goal-oriented semantics. can get value assignment for
goal member (A,[B|C]) by showing truth of subgoal
member (A,C) and retaining value bindings of the
variables

procedural semantics: think of head of clause as
procedureentry, terms as parameters. then body
consists of callswithin this procedureto do the
calculation. variables bindings arelike “returned
values’.

Prolog-2, CS314 Fall 01© BGRyder n

Example
?- nmenber(a,[a, b]).
yes
?- menber(a,[b,c]). —
no Invertability of Prolog
t
2. menber (X, [a, b, c]). Lo9dMAMS
X=a ;
X =Db ;
X =c ; 1. member (A, [A | B]).

2. member (A, [B | C]) :- member (A, C).

no

Prolog-2, CS314 Fall 01© BGRyder 1

Example

?- menber(a, [b, ¢, X]).

- e 1. member (A, [A | B]).
2. member (X, Y). 2. member (A, [B | C]) :- member (A, C).
X = 123
Y =[X]| _124]) ;
X = _123 Lazy evaluation
Y = [L125, X | _126] ; of unbounded list
X = _123 structure. Unbound X
Y= [127, _128, X |_129] |gasfirg element, second
element, third element, etc.

Prolog-2, CS314 Fall 01© BGRyder 13

Prolog Search Tree

member (X,[a,b,c])

X:A:a,B:[b,c]/ \x:A,B:a,C:[b,c]

X=a member (X,[b,c])

success X=A",B'=b,C'=[c]
X=A’=b,B’=[(] member%
X=b X=A"=c,B’= e
= ¢ //[] "=c, C"=[]
X=c member (A”,[])
success

1. member (A, [A | B]). / \

2. member (A, [B | C]) :- member (A, C). fail fail

Prolog-2, CS314 Fall 01© BGRyder 14

1. member (A, [A | B]).
2. member (A, [B | C]) :- member (A, C).

?- member (X, [a,b,c]).
match rule 1. member(A,[A|B])soX =A=a,B=[b,(]
X=a ;
match rule2. member(A,[B|C])soX=A,B=a,C=[b,]
then evaluate subgoal member (X, [b,c])
match rule 1. member (A’ ,[A’ |B’]) so X =b, B’ =[]
X=b;
match rule 2. member(A’,[B’ |C']) soX =A’,B’ =Db, C’ =[]
then evaluate subgoal member (X, [c])
match rule 1. member (A” ,[A” | B"]) so X=A"=c¢, B"=[]
X=c;
match rule 2. member (A”,[B” | C"]) so X=A", B" =,
C”=[], but member (X, []) Isunsatisfiable, no

Prolog-2, CS314 Fall 01© BGRyder 15

Another Search Tree

member (a, [b,c,X])

/ \B=b,C=[C,X]

fail, acan’t men‘]ber(a’[c’ X])
unify with b
/ \ B'=c, C'=[X]
fail, acan’t member (a,[X]).
unify with ¢ /
X5B”, C"=[]
X=a,B"=[] b
1. member (A, [A | B]). success member (a,])

2. member (A, [B | C]) :- member (A, C).
fail, can’t unify fail, ditto
Prolog-2, CS314 Fall 01© BGRyder [] with a ||g s

Prolog Search Trees

» Really have built an evaluation treefor the
query nenber (X, [a, b, c]) .

» Search trees provide a formalism to consider
all possible computation paths

» L eavesare success nodesor failureswhere
computation can proceed no further

* By convention, to model Prolog, leftmost
subgoal istried first

Prolog-2, CS314 Fall 01© BGRyder

Prolog Search Trees, cont.

» Label edgeswith variable bindings that occur
by unification

* Therecan be morethan one success node

* Therecan beinfinitebranchesin thetree,
representing non-ter minating computations
(performed lazily by Prolog); lazy evaluation
implies only gener ate a node when needed.

Prolog-2, CS314 Fall 01© BGRyder 18

Another Member of Function

Equivalent set of rules:

/\ don’t carevariables

men(A [A] _1).

mem(A [_ | G) :- mem(A O.
C

Can examine sear ch tree and see the variables which

have been excised were auxiliary variablesin the
clauses.

Prolog-2, CS314 Fall 01© BGRyder 19

Tracing in Quintus Prolog

?-[mem]. %loadsfile mem.pl
?-trace. %turnson tracing facility | 1. memberof(A, [A | B]).
[trace] 2. memberof (A, [B | C]) :- memberof (A, C).
| ?- member of(X,[a,b,c]).
(1) 0 Call: memberof(_6783,[a,b,c]) ?
(1) 1 Head [1->2]: member of(_6783,[ab,d]) ? | Malchesmemberof(a[a|b.c])
(1) 0 Exit: memberof(a[ab,d]) ? with rule #1.
X=a;
(1) 0 Redo: memberof(a,[a,b,c]) ?

(1) 1 Head [2]: memberof(_6783,[a,b,c]) ? Asked for another answer, tries
(2) 1 Call: memberof(_6783,[b,c]) ? using rule#2. Tries
(2) 2 Head [1->2]: memberof(_6783,[b,c]) ? | memberof(X,[b,c]) and
(2) 1 Exit: memberof(b,[b,c]) ? matches memberof(b,[b | c])
(1) 0 Exit: memberof(b,[a,b,c]) ? with rule #1.
X=b;

Prolog-2, CS314 Fall 01© BGRyder 2

10

Tracing in Quintus Prolog

(1) 0 Redo: memberof(b,[a,b,c]) ?

(2) 1 Redo: memberof(b,[b,c]) ?

(2) 2 Head [2]: memberof(_6783,[b,c]) ?
(3) 2 Call: memberof(_6783,[c]) ?

(3) 3Head [1->2]: memberof(_6783,[c]) ?
(3) 2 Exit: memberof(c,[c]) ?

Asked for another answer, tries
member of (X,[b,c]) using rule #2.
Tries memberof(X,[c]) and
matches member of(c,[c]) by rule #1.

(2) 1 Exit: member of(c,[b,c]) ? (4) 4 Head [2]: memberof(_6783,[]) ?
(1) 0 Exit: memberof(c,[a,b,c]) ? (4) 3 Fail: memberof(_6783,[]) ?
X=c; (3) 2 Fail: memberof(_6783,[c]) ?

(1) 0 Redo: memberof(c,[a,b,c]) ? (2) 1 Fail: member of (_6783,[b,c]) ?
(2) 1 Redo: memberof(c,[b,c]) ? (1) 0 Fail: memberof(_6783,[a,b,c]) ?

(3) 2 Redo: memberof(c,[c]) ?
(3) 3Head [2]: memberof(_6783,[c]) ? no ’ Finds no more choices totry‘
(4) 3 Call: memberof(_6783,[]) ?

(4) 4 Head [1->2]: memberof(_6783,[]) ?

1. member (A, [A | B]).
Prolog-2, CS314 Fall 01© BGRyder 2 member(A, [B | C]) . member (A, C) 21

Tracing in Quintus Prolog

call exit
—_— —
1.Memberof(A, [A|B]). success
2.Memberof (A,[B|C]):-
fail < Memberof(A,C) redo
— —

11

