
1

Prolog-2, CS314 Fall 01© BGRyder
1

Prolog -2

• Negation by failure
• Lists

– Unifying lists

• Functions on lists
– Member_of()

– Don’t care variables

• Prolog search trees + traces

Prolog-2, CS314 Fall 01© BGRyder
2

Review of Prolog

• Language constructs

– facts, rules, queries
• Logic programming Prolog

Non-deterministic rule order/subgoal order

• Separation of logic (what) from control (how)

• Horn clauses
– How variables are bound to values

• Goal-oriented semantics
• Recursive rules

• Negation as failure

2

Prolog-2, CS314 Fall 01© BGRyder
3

Negation by Failure, revisited
not(X) :- X, !, fail.
not(_) .

if X succeeds in first rule, then the goal fails
because of the last term.

if we type “;” the cut (!) will prevent us
from backtracking over it or trying the
second rule so there is no way to undue
the fail.

if X fails in the first rule, then the goal fails
because subgoal X fails. the system tries
the second rule which succeeds, since “_”
unifies with anything.

Prolog-2, CS314 Fall 01© BGRyder
4

Negation by Failure

• Not equivalent to logical not in Prolog
– Prolog can only assert that something is true

– Prolog cannot assert that something is false, but
only that it cannot be proven with the given rules

3

Prolog-2, CS314 Fall 01© BGRyder
5

Prolog Syntax

• Names come from first order logic
a(X,Y) :- b (c(Y)), integer(X).

– Predicates are evaluated
– Functors with terms are unified

– Call this a clause or rule
cf. “Computing with Logic”, D. Warren and D. Meyers

Prolog-2, CS314 Fall 01© BGRyder
6

Lists

list head tail
[a,b,c] a [b,c]

[X,[cat],Y] X [[cat],Y]

[a,[b, c],d] a [[b,c],d]

[X | Y] X Y

a list consists of a sequence of terms

a

b

c
[]

a

b
c

[]
d

[]

4

Prolog-2, CS314 Fall 01© BGRyder
7

Unifying Lists

[X,Y,Z] = [john, likes, fish]

X = john, Y = likes, Z = fish

[cat] = [X | Y]

X = cat, Y = []

[[the, Y] | Z] = [[X, hare] | [is here]
]

X = the, Y = hare, Z = [is here]

[1 | 2] versus [1, 2]

1 2
1

2 []

Prolog-2, CS314 Fall 01© BGRyder
8

Lists

• Sequence of elements separated by
commas, or

• [first element | rest_of_list]
– sort of “[car(list) | cdr(list)]” notation

[[the | Y] | Z] = [[X, hare] | [is, here]]

the Y
Z

X

hare []

is
here []

5

Prolog-2, CS314 Fall 01© BGRyder
9

Lists

[X, abc, Y] =? [X, abc | Y]

there is no value binding for Y, to make these
two trees isomorphic.

X

abc

Y []

X

abc Y

Prolog-2, CS314 Fall 01© BGRyder
10

Lists

[a,b | Z] =? [X | Y]

X = a, Y = [b | Z], Z = _

look at the trees to see why this works!
[a, b, c] = [X | Y]

X = a, Y = [b,c] ;

no

It’s better to stick to head and tail form of
Prolog lists -- it’s less confusing!

don’t care variable
unifies with anything

6

Prolog-2, CS314 Fall 01© BGRyder
11

Member_of Function

member(A, [A|B]).

member(A, [B|C]) :- member (A,C).

goal-oriented semantics: can get value assignment for
goal member(A,[B|C]) by showing truth of subgoal
member(A,C) and retaining value bindings of the
variables

procedural semantics: think of head of clause as
procedure entry, terms as parameters. then body
consists of calls within this procedure to do the
calculation. variables bindings are like “returned
values”.

Prolog-2, CS314 Fall 01© BGRyder
12

Example

?- member(a,[a,b]).
yes

?- member(a,[b,c]).

no

?- member(X,[a,b,c]).

X = a ;

X = b ;

X = c ;

no

Invertability of Prolog
arguments

1. member(A, [A | B]).
2. member(A, [B | C]) :- member (A, C).

7

Prolog-2, CS314 Fall 01© BGRyder
13

Example

?- member(a,[b, c, X]).
X= a ;

no

?- member(X,Y).
X = _123

Y = [X | _124]) ;

X = _123

Y = [_125, X | _126] ;

X = _123

Y = [_127, _128, X |_129]

Lazy evaluation
of unbounded list
structure. Unbound X
as first element, second
element, third element, etc.

1. member(A, [A | B]).
2. member(A, [B | C]) :- member (A, C).

Prolog-2, CS314 Fall 01© BGRyder
14

Prolog Search Tree
member(X,[a,b,c])

member(X,[b,c])

X=A,B=a,C=[b,c]

member(X,[c])

X=A’,B’=b,C’=[c]

fail fail

member(A”,[])

X=A”
B”=c, C”=[]

1. member(A, [A | B]).
2. member(A, [B | C]) :- member (A, C).

X=a
success

X=A=a,B=[b,c]

X=b
success

X=A’=b,B’=[c]

X=c
success

X=A”=c,B”=[]

8

Prolog-2, CS314 Fall 01© BGRyder
15

?- member(X, [a,b,c]).
match rule 1. member(A, [A | B]) so X = A = a, B = [b,c]

X = a ;
match rule 2. member(A, [B | C]) so X = A, B = a, C = [b,c]
then evaluate subgoal member(X, [b,c])

match rule 1. member(A’,[A’ | B’]) so X = b, B’ = [c]
X = b ;

 match rule 2. member(A’,[B’ | C’]) so X = A’, B’ = b, C’ = [c]
then evaluate subgoal member(X, [c])

match rule 1. member(A”,[A” | B”]) so X=A”= c, B”=[]
X = c ;

match rule 2. member(A”,[B” | C”]) so X=A”, B”=c,
C”=[], but member(X, []) is unsatisfiable, no

1. member(A, [A | B]).
2. member(A, [B | C]) :- member (A, C).

Prolog-2, CS314 Fall 01© BGRyder
16

Another Search Tree
member(a, [b,c,X])

fail, a can’t
unify with b

member(a,[c, X])

B = b, C = [c,X]

fail, a can’t
unify with c

B’=c, C’=[X]

member(a,[X]).

X=a, B”= []
success member(a,[])

X=B”, C”= []

fail, dittofail, can’t unify
[] with a list

1. member(A, [A | B]).
2. member(A, [B | C]) :- member (A, C).

9

Prolog-2, CS314 Fall 01© BGRyder
17

Prolog Search Trees

• Really have built an evaluation tree for the
query member(X,[a,b,c]).

• Search trees provide a formalism to consider
all possible computation paths

• Leaves are success nodes or failures where
computation can proceed no further

• By convention, to model Prolog, leftmost
subgoal is tried first

Prolog-2, CS314 Fall 01© BGRyder
18

Prolog Search Trees, cont.

• Label edges with variable bindings that occur
by unification

• There can be more than one success node
• There can be infinite branches in the tree,

representing non-terminating computations
(performed lazily by Prolog); lazy evaluation
implies only generate a node when needed.

10

Prolog-2, CS314 Fall 01© BGRyder
19

Another Member_of Function

Equivalent set of rules:

mem(A, [A | _]).

mem(A, [_ | C]) :- mem(A,C).

Can examine search tree and see the variables which
have been excised were auxiliary variables in the
clauses.

don’t care variables

Prolog-2, CS314 Fall 01© BGRyder
20

Tracing in Quintus Prolog
?-[mem]. %loads file mem.pl
?-trace. %turns on tracing facility
[trace]

| ?- memberof(X,[a,b,c]).
 (1) 0 Call: memberof(_6783,[a,b,c]) ?
 (1) 1 Head [1->2]: memberof(_6783,[a,b,c]) ?
 (1) 0 Exit: memberof(a,[a,b,c]) ?
X = a ;
 (1) 0 Redo: memberof(a,[a,b,c]) ?
 (1) 1 Head [2]: memberof(_6783,[a,b,c]) ?
 (2) 1 Call: memberof(_6783,[b,c]) ?
 (2) 2 Head [1->2]: memberof(_6783,[b,c]) ?
 (2) 1 Exit: memberof(b,[b,c]) ?
 (1) 0 Exit: memberof(b,[a,b,c]) ?
X = b ;

1. memberof(A, [A | B]).
2. memberof(A, [B | C]) :- memberof (A, C).

Matches memberof(a,[a | b,c])
with rule #1.

Asked for another answer, tries
using rule #2. Tries
memberof(X,[b,c]) and
matches memberof(b,[b | c])
with rule #1.

11

Prolog-2, CS314 Fall 01© BGRyder
21

Tracing in Quintus Prolog
 (1) 0 Redo: memberof(b,[a,b,c]) ?
 (2) 1 Redo: memberof(b,[b,c]) ?
 (2) 2 Head [2]: memberof(_6783,[b,c]) ?
 (3) 2 Call: memberof(_6783,[c]) ?
 (3) 3 Head [1->2]: memberof(_6783,[c]) ?
 (3) 2 Exit: memberof(c,[c]) ?
 (2) 1 Exit: memberof(c,[b,c]) ?
 (1) 0 Exit: memberof(c,[a,b,c]) ?
 X = c ;
 (1) 0 Redo: memberof(c,[a,b,c]) ?
 (2) 1 Redo: memberof(c,[b,c]) ?
 (3) 2 Redo: memberof(c,[c]) ?
 (3) 3 Head [2]: memberof(_6783,[c]) ?
 (4) 3 Call: memberof(_6783,[]) ?
 (4) 4 Head [1->2]: memberof(_6783,[]) ?

 (4) 4 Head [2]: memberof(_6783,[]) ?
 (4) 3 Fail: memberof(_6783,[]) ?
 (3) 2 Fail: memberof(_6783,[c]) ?
 (2) 1 Fail: memberof(_6783,[b,c]) ?
 (1) 0 Fail: memberof(_6783,[a,b,c]) ?

 no

1. member(A, [A | B]).
2. member(A, [B | C]) :- member (A, C).

Asked for another answer, tries
memberof(X,[b,c]) using rule #2.
Tries memberof(X,[c]) and
matches memberof(c,[c]) by rule #1.

Finds no more choices to try

Prolog-2, CS314 Fall 01© BGRyder
22

Tracing in Quintus Prolog

call exit

redofail

success1.Memberof(A, [A|B]).

2.Memberof(A,[B|C]):-
 Memberof(A,C)

