
1

Prolog-3, CS314 Fall 01© BGRyder 1

Prolog - 3

• Append on lists
• Generate and test paradigm

– n Queens example

• Unification
– Informal definition: isomorphism

– Formal definition: substitution

Prolog-3, CS314 Fall 01© BGRyder 2

Prolog Nomenclature

• Unification: (variable bindings) specializes
general rules to apply to a specific proof

• Backward Chaining: reduces goal to one or
more subgoals

• Backtracking: systematically searches for all
possible solutions that can be obtained via
unification and backward chaining.

2

Prolog-3, CS314 Fall 01© BGRyder 3

Append Function

append ([], A, A).

append([A|B], C, [A|D]) :- append(B,C,D).

• Build a list
?- append([a],[b],Y).

Y = [a,b]

• Break a list into constituent parts
?- append(X,[b],[a,b]).

X = [a]

?- append([a],Y,[a,b]).

Y = [b]

Prolog-3, CS314 Fall 01© BGRyder 4

More Append

?- append(X,Y,[a,b]).

X = []

Y = [a,b] ;

X = [a]

Y = [b] ;

X = [a,b]

Y = [] ;

no

3

Prolog-3, CS314 Fall 01© BGRyder 5

Still More Append

• Generating an unbounded number of lists
?- append(X,[b],Y).

X = []

Y = [b] ;

X = [_169]

Y = [_169, b] ;

X = [_169, _170]

Y = [_169, _170, b] ;

etc.

Prolog-3, CS314 Fall 01© BGRyder 6

Generate and Test

• Paradigm in which Prolog rules generate
potential solutions and then test them for the
desired properties

• Used often in simulations with lots of
alternatives

4

Prolog-3, CS314 Fall 01© BGRyder 7

n Queens

• Problem is given an n by n chessboard, place
each of n queens on the board so that no
queen can attack another in one move
– In chess, queens can move either vertically,

horizontally or diagonally.

• This problem is a classic generate and test
problem

• Code on remus:~ryder/314/prolog/programs/queens.pl

Prolog-3, CS314 Fall 01© BGRyder 8

n Queens
not(X):- X, !, fail. %same as saw in class

not(_).

in(H,[H|_]). %same as our member_of
in(H,[_|T]):- in(H,T).

%%%nums generates a list of integers between two other
numbers, L,H by putting the first number at the
front of the list returned by a recursive call with
a number 1 greater than the first. It only works
when the first argument is bound to an integer. It
stops when it gets to the higher number.

nums(H,H,[H]).

nums(L,H,[L|R]):- L<H, N is L+1, nums(N,H,R).

%%% The number of queens/size of board - use 4
queen_no(4).

5

Prolog-3, CS314 Fall 01© BGRyder 9

n Queens

%%% ranks and files generate the x and y axes of the
chess board. Both are lists of numbers up to the
number of queens; that is, ranks(L) binds L to the

list [1,2,3,…,#queens].

ranks(L):- queen_no(N), nums(1,N,L).

files(L):- queen_no(N), nums(1,N,L).

%%% R is a rank on the board; selects a particular
rank R from the list of all ranks L.

rank(R):- ranks(L), in(R,L).

%%% F is a file on the board; selects a particular
file F from the list of all files L.

file(F):- files(L), in(F,L).

Prolog-3, CS314 Fall 01© BGRyder 10

 n Queens
%%% Squares on the board are (rank,file) coordinates.

attacks decides if a queen on the square at rank R1,
file F1 attacks the square at rank R2, file F2 or
vice versa. A queen attacks every square on the same
rank, the same file, or the same diagonal.

attacks((R,_),(R,_)).

attacks((_,F),(_,F)). %a Prolog tuple
attacks((R1,F1),(R2,F2)):- diagonal((R1,F1),(R2,F2)).

%%%can decompose a Prolog tuple by unification

(X,Y)=(1,2) results in X=1,Y=2; tuples have fixed
size and there is not head-tail type construct for
tuples

x
same diagonal, diagonal
same rank
same file

safe placement

6

Prolog-3, CS314 Fall 01© BGRyder 11

n Queens

%%% Two squares are on the same diagonal if the slope
of the line between them is 1 or -1. Since / is
used, real number values for 1 and -1 are needed.

diagonal((X,Y),(X,Y)). %degenerate case, 0 length diag

diagonal((X1,Y1),(X2,Y2)):- N is Y2-Y1,D is X2-X1,

Q is N/D, Q is 1.0E+00. %diagonal needs bound args

diagonal((X1,Y1),(X2,Y2)):- N is Y2-Y1, D is X2-X1,

Q is N/D, Q is -1.0E+00.

%%%because of use of “is”, diagonal is NOT invertible.

Prolog-3, CS314 Fall 01© BGRyder 12

n Queens
%%%placement can be used as a generator. If placement

is called with a free variable, it will construct
every possible list of squares on the chess board.

The first predicate will allow it to establish the
empty list as a list of squares on the board. The
second predicate will allow it to add any (R,F) pair
onto the front of a list of squares if R is a rank
of the board and F is a file of the board.

placement first generates all 1 element lists, then
all 2 element lists, etc. Switching the order of
predicates in the second clause will cause it to try
varying the length of the list before it varies the
squares added to the list

placement([]).

placement([(R,F)|P]):- placement(P), rank(R), file(F).

7

Prolog-3, CS314 Fall 01© BGRyder 13

n Queens
%%%these two routines check the placement of the next

queen

%%%Checks a list of squares to see that no queen on
any of them would attack any other. does by checking
that position j doesn’t conflict with positions
(j+1),(j+2) etc.

ok_place([]).

ok_place([(R,F)|P]):- no_attacks((R,F),P),ok_place(P).

%%% Checks that a queen at square (R,F) doesn't attack
any square (rank,file pair) in list L; uses attacks
predicate defined previously

no_attacks(_,[]).

no_attacks((R,F),[(R2,F2)|P]):-
not(attacks((R,F),(R2,F2))), no_attacks((R,F),P).

Prolog-3, CS314 Fall 01© BGRyder 14

n Queens

%%% This solution works by generating every list of
squares, such that the length of the list is the
same as the number of queens, and then checks every
list generated to see if it represents a valid
placement of queens to solve the N queens problem;

assume list length function

queens(P):- queen_no(N), length(P,N), placement(P),
ok_place(P).

generate code given first test code follows

8

Prolog-3, CS314 Fall 01© BGRyder 15

Unification, Informally

• Intuitively, unification between 2 Prolog
terms tries to assign values to the variables so
that the resulting trees, representing the
terms, are isomorphic (including matching
labels)

• To use a Prolog rule, we must unify the head
of the rule with the subgoal to be proved,
“matching” term by term

Prolog-3, CS314 Fall 01© BGRyder 16

Unification, Informally
• Given a subgoal <functor>(<term>{, <term>})

how to unify it with a clause head?
– Rule and subgoal have same name
– Any uninstantiated variable matches any

term
• If term is also an uninstantiated variable, this

means if either takes on a value, they both do
– Integer and symbolic constants match

themselves, only
– A structured term matches another term iff

• Has same relation name
• Has same number of components and

corresponding components match

9

Prolog-3, CS314 Fall 01© BGRyder 17

Unification
• Unification looks for the most general (or

least restrictive) value to assign
• A substitution (σ) is a finite map from

variables to terms in the language
append([A|B],Y,[A|Z]):- ...

?- append([a,b],[c],W)

σ: A=a, B=[b], Y=[c], W=[a | Z]

• A term U is an instance of another term
T, if there is a substitution σ such that U
= T σ.

Prolog-3, CS314 Fall 01© BGRyder 18

Unification

• Two terms S,T unify if they have a common
instance U (that is, S σ1 = T σ2 = U)
– Note: if variable X is contained in both S and T,

then σ1 and σ2 both must have the same
substitution for X.

– If two terms unify, they can be made identical
under some substitution

10

Prolog-3, CS314 Fall 01© BGRyder 19

Unification

• There may be more than one substitution to
unify two terms
times(Z,times(Y,7)) and times(4,W)

σ1 : Z=4, Y=plus(3,5),
W=times(plus(3,5),7)

σ2 : Z=4, W=times(Y,7)
Which substitution is simpler? less restrictive on

the values of the variables? σ2

Prolog-3, CS314 Fall 01© BGRyder 20

Most General Unifier

• We say γ is the most general unifier (mgu) of
two terms T, W iff for all other unifiers σ of
T,W, T σ is an instance of T γ. therefore, σ
can be obtained by a substitution δ applied to
γ, σ = γ • δ
?- member(A,B) returns A=_123, B=[A| _] when it

could return A= _123, B=[A,b] or A=_123, B=
[A, c, d] etc. Note, the 2nd and 3rd B values are
obtainable from the mgu by additional
substitutions

