
1

Types-2, CS314 Fall 01© BGRyder
1

Types-2
• Type equivalence

– Structural
– Name

• Algol68
– Arrays

• Array addressing
– User-defined modes
– Discriminated unions
– Dereferencing as type conversion

Types-2, CS314 Fall 01© BGRyder
2

Type Equivalence

Structural equivalence
– SE1: a type name is structurally equivalent to

itself

– SE2: two types are structurally equivalent if they
are formed by applying the same type constructor
to two structurally equivalent types

– SE3: after type declaration type n=T the type
name n is structurally equivalent to T

2

Types-2, CS314 Fall 01© BGRyder
3

Structural Equivalence

• Implies “same shape” type in a user-defined
type

type S = array [0..99] of char

type T = array [0..99] of char

typedef struct{
int j, int k, int *ptr}cell;

typedef struct{

int n, int m, int *p}element;

Types-2, CS314 Fall 01© BGRyder
4

Other Def’ns of Equivalence

T: type array [1..20] of int; x,y,w,z,v are all the same type

x,y: array [1..20] of int; by structural equivalence

w,z : T;

v: T;

Name equivalence:

Types are equivalent which have the same name or are formed by the
same type expression.

x and y are of same type, w, z,v are of same type, but x and w
are of diferent types!

3

Types-2, CS314 Fall 01© BGRyder
5

Fine Points of Type Equiv.

• C/C++ use structural equivalence for all types
except structs

type A = record In C and Algol68, A and B not
x,y : real; equivalent types because the

end; fieldname is part of the type.
type B = record

z,w : real

end;

Types-2, CS314 Fall 01© BGRyder
6

Algol68

• Explicitly typed, statically checkable PL
• Block structured, extensible type system
• Objects - entities stored in memory during execution

of a program
– Mode of an object - analogous to type

• 1 is of mode int

• Variable - considered an L-value declared using the
type of objects that can be assigned to it
– Mode of a variable - int k means that k is of mode ref int

and k can store int values.

A.Tanenbaum, Tutorial on Algol68, ACM
Computing Surveys, June 1976, Vol 8 No 2
in SERC Reading Room

4

Types-2, CS314 Fall 01© BGRyder
7

Algol68

• Examples
– Integer constant, mode int (1)

– Integer-valued variable, mode ref int (j)

– Well-typed assignment statement lhs = rhs
• where lhs is convertible to an object of mode ref int and

rhs is convertible to an object of mode int
int j,k,l; -- means all variables on list are mode ref int

j := 2; -- j can store mode int objects
k := j+l; -- + operator on mode int objects

k := j; --dereference j to obtain 2 of mode int

• Strings are primitive

Types-2, CS314 Fall 01© BGRyder
8

Algol68 - Arrays

• Vector (array) - one dimensional sequence of
objects all having same mode

[] int row of int

[,] real row row of real

• Array type only includes dimensionality, not
bounds
[1:12] int month;[1:7] int day; mode row int
[0:10,0:10]real matrix;

[-4:10,6:9]real table mode row row int

Note table and matrix are type equivalent!

5

Types-2, CS314 Fall 01© BGRyder
9

Algol68 - Arrays

[1:10] [1:5,1:5] int kinglear;
/kinglear is a vector of 10 elements each of which is a
row row int array of 25 elements.
kinglear[j] is legal wherever [,]int mode is legal
kinglear[j][1,2] is legal wherever int mode is legal
kinglear[1,2,3] is ILLEGAL!

Types-2, CS314 Fall 01© BGRyder
10

Array Operations
• Trimming: yields some cross section of an

original Algol68 array (slicing an array into
subarrays)

• Subscripting: limiting 1 dimension to a single
index value

[1:10]int a,b; [1:20] real x; [1:20,1:20] real xx;
b[1:4] := a[1:4] -- assigns 4 elements
b:= a -- assigns all of a to b, same as b[1:10]:=a[1:10]
xx[4,1:20]:=x --assigns 20 elements to row 4 of xx
xx[8:9,7] := x[1:2] --assigns x[1] to xx[8,7] and x[2] to

xx[9,7]

6

Types-2, CS314 Fall 01© BGRyder
11

Array Addressing

• X[low:high] of E bytes each data item. What’s
the address of X[j]?
addr(X) + (j-low) *E <= addr(X) +(high-low)*E

• Note: addr(X)-low*E is a compile-time constant
• X[] row real (4 bytes each);
• X[3] is addr(X[0]) + (3-0)*4 = addr(X) + 12
• X[0], X[1] is at address X[0]+4, X[2] is at address

X[0]+8, etc

Types-2, CS314 Fall 01© BGRyder
12

Array Addressing

• Assume arrays are stored in row major order
y[0,0], y[0,1], y[0,2], …, y[1,*], y[2,*],…

• Consider memory a sequence of locations
• Then if have y[low1:hi1,low2:hi2] in Algol68,

location y[j,k] is
addr(y[low1,low2]) + (hi2-low2+1)*E*(j-low1)
+(k-low2)*E #locs per row #rows in front

elements in row j in of row j

front of element [j,k]

7

Types-2, CS314 Fall 01© BGRyder
13

Example

y[0:2, 0:5] in Algol68, an int array. Assume row major storage and find address
of y[1,3].

address of y[1,3] = addr(y[0,0])+(5-0+1)*4*(1-0)+(3-0)*4
6 elements per row

1 row before row 1
3 elements in row 1 before 3

= addr(y[0,0])+24+12
= addr(y[0,0])+36

• Analogous formula holds for column major order.

Types-2, CS314 Fall 01© BGRyder
14

Algol68 - User-defined Modes

• Similar to typedefs in C, but without pointers
mode vector = [1:n] real;

mode person = struct (string initials, int age, bool
married);

mode family = struct(person mom,dad; [1:2]person
child); //last is a row of person structs, child[1]
and child[2] are two different person structs.

mode tree = struct(int value, ref tree right, left);

//recursive data structure is well-defined; couldn’t
put tree field in tree mode, but ref tree field is
okay.

8

Types-2, CS314 Fall 01© BGRyder
15

Example

person tom := (“tj”, 40, true);

person mary := (“mah”, 37, true);

family jones := (mary,tom,(skip,skip));

initials of mom of jones := “mhj”;

if (age of mom of jones = age of data of jones)….

• Can define new operators on user-defined modes

• Can initialize such variables
• Can use component selection

• Equality comparisons use structural equivalence which includes the
fieldnames

Types-2, CS314 Fall 01© BGRyder
16

Type Unions

• Idea: allow a variable to contain values of
different types during execution
– Pascal: variant records; C, Algol68: unions

• Problem: with unions, how can we assure
type-safe programs?
– Pascal and C are not safe.

– Algol68 is type-safe!! Uses discriminated unions

• Usually all versions of union use same storage

9

Types-2, CS314 Fall 01© BGRyder
17

Example

• C:
union{double f;int j} fi;

…fi.f =3.14159;…printf(“%d\n”, fi.j); ….

– Means that fi sometimes contains int values and
sometimes double values

– Can check all uses of union variables by runtime
check of current type tag, as in PLs with implicit
typing

• Pascal: type tag tells which type value the
variant contains but checking it is optional!

Types-2, CS314 Fall 01© BGRyder
18

Discriminated Unions (Algol68)

union(int, real,bool) kitchensink;

kitchensink := 3;

kitchensink := 3.14;

kitchensink := true;

if random <.5 then kitchensink := 1

 else kitchensink := 2.78

fi;

case kitchensink in

(int j): print ((“integer”,j));

(real r): print ((“real”,r));

(bool b): print ((“bool”,b));

esac;

10

Types-2, CS314 Fall 01© BGRyder
19

Problems with Unions

• What is meaning of assignment to tag field
without assignment to variant fields?
– Ada: must change both value and tag together

• If tag not kept in record itself (Pascal), how
can its value be checked?

• Should tag fields be required to be initialized?
• Component selection has to be runtime

checked

Types-2, CS314 Fall 01© BGRyder
20

Why use Unions?

• Simulate a logical shift on sequence of bits
using a multiply or divide by 2 on an integer

• To allow structs with an initial portion that
has essential information, followed by
properties that vary per person represented
(e.g., has_children, #children, married,
spouse_name)

11

Types-2, CS314 Fall 01© BGRyder
21

Ref Mode
• Algol68 integer variables are of mode ref int

(reference to integer)
• Assignment statement

ref int mode object := mode int object
• Either side of assignment may need dereferencing to

obtain right mode. (However, implicit dereferencing of
the rhs is not performed in Algol68)

• Algol68 does allow more than one automatic
dereference on rhs, whereas Pascal and C each allow
only 1.

• int j,k; j:=k; dereference k to get mode int object

Types-2, CS314 Fall 01© BGRyder
22

Legal Assignments

• Let level be #refs in mode of a variable
• declarations: int j; ref int p;

– j is ref int mode, p is ref ref int mode

– level(3) = 0; level(j) = 1; level(p) = 2

• Consider an assignment lhs := rhs
– level(lhs) <= level(rhs)+1 for a legal assignment

int j,k; ref int q; j:=k;k:=q;q:=j;q:=1;

--level(j)=level(k)=1, so level(j)=1 <= 1+1 okay

--level(k)=1,level(q)=2, so level(k) <=2+1 okay

--level(q)=2,level(j)=1, so level(q)=2 <= 1 + 1 okay

--level(q)=2,level(1)=0, so is 2<= 0+1? NO

12

Types-2, CS314 Fall 01© BGRyder
23

Example
int j,k;

ref int ptr, sptr;

ref ref int pp;

ptr := j; --level(ptr)=2,level(j)=1, 2=1+1 no deref

j := pp; --level(j)=1,level(pp)=3, 1<3+1=4, dereference necessary

k := j; --level(j)=1, level(k)=1, 1< 1+1 dereference necessary

ptr j

pp 4

4

j

k

4 4

j

Types-2, CS314 Fall 01© BGRyder
24

Example
int x,y; ref int rx,ry;

ref ref int rrx,rry;

x:=1; y:=2;

x:= y; --1 deref needed

1 1

rx := y; --no deref needed

2 1

rrx := rx; --no deref needed

3 2

rry := y; --illegal!

 3 1 3 <= 1+1=2 NO!

ry := rrx; --2 derefs needed

 2 3

x y
1 2

x y
2 2

rx

rrx

2 2

x y ryrrx rx

13

Types-2, CS314 Fall 01© BGRyder
25

Ref Mode
• What would happen in a PL which did no

automatic dereferencing on the rhs of
assignments?
– You would need to explicitly encode all

dereferences

• Can you think of an assignment that is legal
in Algol68 but not in C?
– C int * pointers correspond to ref ref int variables

– & operator prevents automatic dereferencing on
rhs of assignment

Types-2, CS314 Fall 01© BGRyder
26

Allowing LHS Dereferences
• In C, int *rx;int y;*rx =y; is legal; Can we achieve

this in Algol68 without an explicit dereference
operator?

 ref int rx; int y

rx := y might have 2 interpretations
1. no dereferencing on lhs

 2. deref both lhs, rhs once

Which is meant? Can’t tell.
Need to use an explicit cast
ref int (rx):=y forces rx, a mode ref ref int

variable,to be dereferenced once to become a mode ref
int variable

rx y

rx y

x

before: after:

y

x

1 1

1

14

Types-2, CS314 Fall 01© BGRyder
27

Allowing LHS Dereferences

• Another example
rrx := rx

--3 interpretations possible
1. no dereferences

2. 1 deref of rhs and lhs

3. 2 derefs of rhs and lhs

rrx rx

no deref

rrx rx

ry
y

x
2 rrx rx

ry

y

x
2

1 deref

ref ref int (rrx) := rx
rrx

rx

ry
y

x
22 derefs

2

ref int (rrx) := rx

