Concurrency

» What isconcurrent programming?

* Problems of concurrent programming
— Liveness:
— Safety
* Modelsof concurrency
— shared memory/ dsitributed memory (message passing)

* |ssues: communication, synchronization, definition

» 3 examples: Unix pipes, Co-routines, rendezvous
« Concurrent programming techniques

» Survey of some PL features of concurrency

CS314© AB/BGR

M otivation for (seemingly)
parallel computation

» Different speedsfor different computer components
— 1/O much dower than CPU -- data channels
» Different speeds between humans and computersin
interactive systems
* When problem structureisnaturally parallel:
— discrete event smulation
— web-page display: once layout of a web pageisknown, displaying

different pictures, etc. can be done independently; and user can
do other things while waiting for whole page

“task parallelism”

* Numerical computationson huge arrays
A =B +C issameas A[j]=B[j]+CJj] <--- all can be doneindependently
— “data parallelism”

* Multiprocessor hardware

CS314© AB/BGR

Concurrent Programming

» Allows multiplethreads of computation at same
time

» Two general models
— Shared memory (SM)
— Distributed memory (message passing) (DM)

| Memory | I nterconnection Network

CS314© AB/BGR

Concurrent Execution - terminology

» At hardwarelevel, “in parallel” means operations
overlappingin time

* |In software, “concurrently” meansoperationsthat are
potentially (but need not be) executed in parallel

» Process- a sequential computation with itsown thread of
control

— Event -- atomic action (uninterrupted)
— Thread of a process -- sequence of events

* Problems of concurrency:
— Liveness: threads progress reasonably (e.g., no “ deadlock”)
— Safety: getting the“right” answer (e.g., no “race conditions’)

CS314© AB/BGR

a) LIVENESS: e.g. Dining Philosophers
Problem

Philosophers eat
and talk at dinner. \ /
To eat, a philosopher \

must use 2 forks; O
however, if her O

neighbor is eating,

she cannot eat.
To think, a philosopher

/
puts down both her forks Q \ Q

Philosopher: process; fork:resource. Competition for resources.
Questions about algorithm:

« fairness (can anyone starve?)

* can anyone eat?

CS314© AB/BGR

Dining Philosophers-2

Deadlock: a chain of dependencies
in which one process depends on
aresour ce held by another process

N0/
Each philosopher: Q @

loop: pickup fork on right; (lock resource)
pickup fork on left;

eat for awhile; O
release forks; (unlock resour ce) @ \
think for awhile;

end loop;

May result in “pickup fork on right and wait for fork on left”.

CS314© AB/BGR

Dining Philosophers- 3

O/
=

Livelock: continuing execution,
but without progress

if all philosophersdo:
pickup left fork;
release left fork;
pickup right fork;

EER 7o\ O

\Q/

CS314© AB/BGR

Dining Philosophers- 4

» Fairness. any processthat wishesto execute can
do soin afiniteamount of time

— So every philosopher should get a chancetoeat in a
fair algorithm

CS314© AB/BGR

b) SAFETY
Define concurrency as I nterleaving of threads:

possible orderingsthat maintain relative
order of eventswithin onethread

{a b} {x;y; 2
axbyz interleaving preservesrelative order

abxyz of eventsin any particular thread
axybz, etc

CS314© AB/BGR

Safety problems

* Two processes P and Q
P={x=x+1;}
Q={x=x+2; }
Consider each statement as an atomic event.

Execute P and Q concurrently: with interleaving, order does not
matter - effect isadd 3to x

* Two processes P’ and Q’
P ={t=load(x); store(x,t + 1);}
Q' ={s=load(x); store(x, s+ 2);}
/* Pand Q trandated into assembler; event are assembler ops*/
| F we desirethe same effect asrunning P and Q (in either order)
— Someinterleavings ok:
t=load(x); store(x,t+1); s=load(x); store(x,s+2);
— Othersdo not produce expected final result:
t=load(x); s=load(x); x=st+2; store(x,t+1);
[*at end, x isincremented by 1 only */

CS314© AB/BGR

10

Ensuring Safety with interleaving

» Mutual exclusion: many processes share aresource (e.g.,
variable) but only 1 allowed to “use’ it at atime.

— Toensuresafety, program for a process includes statements for
acquiring and releasing resour ces appropriately

 Critical section: section of code that must be executed asiif
it isatomic (usually involves shared data)

eg., [t=load(x); store(xt+1);]

— Each thread executesitscritical section completely befor e another
thread can enter itsown critical section (including the one
containing access to the same shar ed data --> solves mutual
exclusion).

— Aninterleaving is considered safeif the eventsin every designated
critical section are executed atomically/contiguously.

— Toensuresafety, programs mark critical sections
» GOAL: allow as much concurrency as possible
e.g.
R={y=7; t=load(x); store(x,t + 1);}
S={s=load(x); store(x, s+ 2); z=3;}

CS314© AB/BGR

11

Alternate Safety Definition

o Database serializability

— Two processes T1 and T2 execute serially if 1st process
executes completely beforethe other one begins

— Any serial execution of the processesis considered to
produceacorrect result: T1;T2or T2;T1

— Serializablity criterion: an interleaving of the stepsof T1
and T2 isconsidered safeif itsfinal effect isthe same as
that of some serial execution of the processes

CS314© AB/BGR

12

P{t=x; x:=t+1;}

Serializable Executions

Q{u:=x; y:=2*u;}

PQ T=X X==0
X:=t+1; x==1
u:=x; safe
y:=2*u y==2 and x==1

QP u=x X==
y = 2*u y==
t=Xx;
X:=t+1; x==1 and y== safe

?? u:=x; X==
t=x; ??isconsidered safe
yi= 2"y, y== because results mirror
X:=t+1; x==1and y== QP

CS314© AB/BGR

13

e P{t=x;x:=t+1;}

Nonserializable Executions

Q {u:=x; x:=u+2;}

P,Q t=x; x==0, t==
X.=t+1; X==
u:=x; u==1- safe
Xi=Uu+2; X==3°
QP u=x x==0,u==0
X:= Uu+2; X==
ti=x; t==2- safe
X:=t+1, X==3°
7 t:=X; x==0,t==
ui=x; u==0- Not seriaizable, because
X:=U+2, X== outcomeis not P,Q nor Q,P
X:=t+1, X==1-

CS314© AB/BGR

14

Concurrent Programming PL Issues

— Process description
— Thread creation/destruction
— Communication: relating onethread to another in terms of
exchange of data
» DM: send/receive <info> (“ messages’)
» SM: shared variable access
— Synchronization: relating order of eventsin onethread to
another (exchange of control infor mation)
» DM:often provided implicitly by wait for message
e SM: usually programmed explicitly

CS314© AB/BGR

15

1. Unix Pipes
Processes connected through pipes

€.g., “givefile names containing march, one screen at a time”
Is * | grep ‘march™ | more

— according to definition: each operation creates as
output afile, which isprovided asinput to next
operation

— BUT: operations could be processes, connected by
pipes streaming values from oneto the other; process
waits when pipeisempty, proceeds concurrently with
preceding one

— communication: streams of ascii chars grouped into
lines

— implicit synchronization: process waitsfor next value
in itsinput stream, if not yet available

CS314© AB/BGR

16

2. Coroutines explicitly serial)

e.g., Sreadslines, findsnextword inlineof text;
T processes aword depending on context.

S T

v v

Coroutineflow of control Procedure flow of control between

between S and T: control W and V; V isfully executed; then

alwaysreturnstowhereit last left control returnsto W, whereit last

off in both Sand T.(both have contexts) || left of. v
CS3HE—ABBER

Coroutines (cont’d)
Pseudo-concurrent:
— Synchronization: explicit t r ansf er statement
— Communication: globals or ref parametersin call
— Possible implementation: closures, “ cactus stacks’

eg.,
Coroutinefrom_to _by(from, to, by:int; ref j: int; ref done: bool; caller:coroutine)
j :=from
done:= (from >=to) Iterator <from,from+by,
detach //wait till someone resumes (transfers back) from+by+by,_...>
loop as acoroutine.
{j+=by “Yields’ viareference
done := (j >=to) parameter J;
transfer(caller) //transfer control to caller terminates’ via done;

}
end from_to_by

18

CS314© AB/BGR

3. Rendezvous

2threads,Cand S
Synchronization:

— onethread (‘client’/C) offersahandto S;
— theother thread (‘server’/S) accepts hand (from

anyone);

— when hands meet, shake (“ rendezvous’ - meeting)
— Whichever one arrivesfirst at therendezvous hasto wait

for the other one.

— Server may accept from multiple clients

at rendezvous

Communication : allow in/out parametersin “handshake”’

Mutual exclusion isenforced during rendezvous

— Body of accept clauseactsascritical section

CS314© AB/BGR

19

P Q hasentry synch
begin begin
entry_name
!
| accept synch do
Q.syrch® ept sy
Server_name . entry_name
end synch
end P end Q
client/caller server/callee

CS314© AB/BGR

20

10

Ada Syntax

* entrycall « non-deterministic choice of entries
<server_name>.<entry_name> sel ect
. entry accept Entrl do
end Entr1;
accept <entry_name>(args) or
do
{ sequence of statements, accept Entr2(param) do
executed without interruption} o
end <entry_name> end Entr2;
end sel ect

but only those are considered which are ready
for rendezvous; so server blocks only if neither
Entrl or Entr2 are called at this point.

21

CS314© AB/BGR

More Ada

» Even moregeneral: guarded entries:

sel ect when exprl => accept X do
end X;
or when expr2 => accept Y do
end Y;
end sel ect;

— all guardsevaluated when select isentered; an alternative
is“open” if itsguard istrue
— act asregular select, but only on the open alter natives
« (if all alternativesareclosed, error)
— when blocked, look for new entries opening up

CS314© AB/BGR

An example: producer/consumer problem

Producer gets pieces of data (at somerate) and
“massages’ them, before passing them on

» Consumer “chews’ thereceived data and then spitsit out

» Each act at their own rate

» Toallow producer to move faster (or ...), “bounded
gueue” may be availableto hold values not yet chewed

e Problemstowatch for:
— safety: “dropped” input;
— no concurrency
— deadlock

CS314© AB/BGR

23

Bad Solution with no global variable

task producer
body{ global
C: char; variable
loop{ g
get(c);
¢ := massage(c);
g:=c}
task consumer
body{ Problem:
d: char; producer can race ahead and
loop{ overwrite avalue before
di=g consumer getsto it:
d :=chew (d);
put(d); g=cl
} g:=c2
} d:=g

CS314© AB/BGR

24

12

Good solution -- with a buffer task

task pool task type producer
entry add (x: in char); body{
entry remove (X: out char); c: char;
body{ loop{
declareand initialize a get(c);
private set or queue Q; ¢ := massage(c);
loop{ select pool.add(c);
* when (Q not full) => }
accept add(v); }
add v to back of Q;
end enter; task type consumer
or body{
* when (Q not empty) => d: char;
accept remove(Vv) loop{
remove front of Q intov; pool.remove(d);
end leave; d=chew (d);
end select} put(d);
end loop} }
} }

CS314© AB/BGR

25

Putting it all together (in Ada)

procedure main {
task pool { ... }; //single process named buffer launched at elaboration
begin
C: consumer; //procesc of task type consumer launched at elaboration;
refersto global task called pool
p: producer;
do
null;
end;

Trace:
— aternating producer and consumer
— faster producer
— faster consumer
— multiple consumers c, c2, ¢3: consuner;
— multiple producers p, pA, : producer ;

CS314© AB/BGR

26

13

