
1

CS314 © AB/BGR

1

Concurrency

• What is concurrent programming?
• Problems of concurrent programming

– Liveness:

– Safety

• Models of concurrency
– shared memory/ dsitributed memory (message passing)

• Issues: communication, synchronization, definition

• 3 examples: Unix pipes, Co-routines, rendezvous
• Concurrent programming techniques
• Survey of some PL features of concurrency

CS314 © AB/BGR

2

Motivation for (seemingly)
parallel computation

• Different speeds for different computer components
– I/O much slower than CPU -- data channels

• Different speeds between humans and computers in
interactive systems

• When problem structure is naturally parallel:
– discrete event simulation
– web-page display: once layout of a web page is known, displaying

different pictures, etc. can be done independently; and user can
do other things while waiting for whole page

“task parallelism”

• Numerical computations on huge arrays
A = B + C is same as A[j]=B[j]+C[j] <--- all can be done independently

– “data parallelism”

• Multiprocessor hardware

2

CS314 © AB/BGR

3

Concurrent Programming

• Allows multiple threads of computation at same
time

• Two general models
– Shared memory (SM)

– Distributed memory (message passing) (DM)

...

Memory

bus

processor

Interconnection Network

memory
...

processor

CS314 © AB/BGR

4

Concurrent Execution - terminology

• At hardware level, “in parallel” means operations
overlapping in time

• In software, “concurrently” means operations that are
potentially (but need not be) executed in parallel

• Process - a sequential computation with its own thread of
control
– Event -- atomic action (uninterrupted)

– Thread of a process -- sequence of events

• Problems of concurrency:
– Liveness: threads progress reasonably (e.g., no “deadlock”)

– Safety: getting the “right” answer (e.g., no “race conditions”)

3

CS314 © AB/BGR

5

a) LIVENESS: e.g. Dining Philosophers
Problem

Philosophers eat
and talk at dinner.
To eat, a philosopher
must use 2 forks;
however, if her
neighbor is eating,
she cannot eat.
To think, a philosopher
puts down both her forks

Philosopher: process; fork:resource. Competition for resources.
Questions about algorithm:

• fairness (can anyone starve?)
• can anyone eat?

CS314 © AB/BGR

6

Dining Philosophers-2

Deadlock: a chain of dependencies
in which one process depends on
a resource held by another process

Each philosopher:
loop: pickup fork on right; (lock resource)
 pickup fork on left;
 eat for a while;
 release forks; (unlock resource)
 think for a while;
end loop;

May result in “pickup fork on right and wait for fork on left”.

4

CS314 © AB/BGR

7

Dining Philosophers - 3

Livelock: continuing execution,
but without progress

if all philosophers do:
pickup left fork;
release left fork;
pickup right fork;
release right fork;

…

CS314 © AB/BGR

8

Dining Philosophers - 4

• Fairness: any process that wishes to execute can
do so in a finite amount of time
– So every philosopher should get a chance to eat in a

fair algorithm

5

CS314 © AB/BGR

9

b) SAFETY

Define concurrency as Interleaving of threads:
possible orderings that maintain relative
order of events within one thread

{ a; b} {x; y; z}

a x b y z interleaving preserves relative order

a b x y z of events in any particular thread

a x y b z , etc.

CS314 © AB/BGR

10

Safety problems
• Two processes P and Q

P = { x=x+1; }

Q= { x=x+2; }
Consider each statement as an atomic event.

Execute P and Q concurrently: with interleaving, order does not
matter - effect is add 3 to x

• Two processes P’ and Q’
P’ = { t = load(x); store(x , t + 1);}

Q’ = {s = load(x); store(x , s + 2);}
 /* P and Q translated into assembler; event are assembler ops */

IF we desire the same effect as running P and Q (in either order)

– Some interleavings ok:

 t=load(x); store(x,t+1); s=load(x); store(x,s+2);

– Others do not produce expected final result:

 t=load(x); s=load(x); x=s+2; store(x,t+1);

 /*at end, x is incremented by 1 only */

6

CS314 © AB/BGR

11

Ensuring Safety with interleaving
• Mutual exclusion: many processes share a resource (e.g.,

variable) but only 1 allowed to “use” it at a time.
– To ensure safety, program for a process includes statements for

acquiring and releasing resources appropriately

• Critical section: section of code that must be executed as if
it is atomic (usually involves shared data)
e.g., [t=load(x); store(x,t+1);]
– Each thread executes its critical section completely before another

thread can enter its own critical section (including the one
containing access to the same shared data --> solves mutual
exclusion).

– An interleaving is considered safe if the events in every designated
critical section are executed atomically/contiguously.

– To ensure safety, programs mark critical sections

• GOAL: allow as much concurrency as possible
e.g.

R = { y = 7; t = load(x); store(x , t + 1);}
S = {s = load(x); store(x , s + 2); z= 3;}

CS314 © AB/BGR

12

Alternate Safety Definition

• Database serializability
– Two processes T1 and T2 execute serially if 1st process

executes completely before the other one begins
– Any serial execution of the processes is considered to

produce a correct result : T1;T2 or T2;T1
– Serializablity criterion: an interleaving of the steps of T1

and T2 is considered safe if its final effect is the same as
that of some serial execution of the processes

7

CS314 © AB/BGR

13

Serializable Executions
P {t:= x; x:= t+1;} Q {u :=x; y:= 2*u;}
P, Q t:= x; x == 0

x:= t+1; x==1
u:=x;
y:= 2*u; y==2 and x==1

Q, P u:=x; x==0
y := 2*u; y==0
t:= x;
x:= t+1; x==1 and y==0

?? u:= x; x==0
t:= x;
y:= 2*u; y==0
x:= t+1; x==1 and y==0

safe

safe

?? is considered safe
because results mirror
Q,P

CS314 © AB/BGR

14

Nonserializable Executions

• P { t:= x; x:= t+1;} Q {u:=x; x:= u+2;}
P,Q t:= x; x==0, t==0

x:=t+1; x==1
u:= x; u==1 •
x:= u+2; x==3 •

Q,P u:= x; x==0,u==0
x:= u+2; x==2
t:=x; t==2 •
x:=t+1; x==3 •

?? t:=x; x==0,t==0
u:=x; u==0 •
x:=u+2; x==2
x:=t+1; x==1 •

safe

safe

Not serializable, because
outcome is not P,Q nor Q,P

8

CS314 © AB/BGR

15

Concurrent Programming PL Issues

– Process description

– Thread creation/destruction

– Communication: relating one thread to another in terms of
exchange of data

• DM: send/receive <info> (“messages”)
• SM: shared variable access

– Synchronization: relating order of events in one thread to
another (exchange of control information)

• DM:often provided implicitly by wait for message

• SM: usually programmed explicitly

CS314 © AB/BGR

16

1. Unix Pipes

Processes connected through pipes

e.g., “give file names containing march, one screen at a time”

 ls * | grep `march` | more
– according to definition: each operation creates as

output a file, which is provided as input to next
operation

– BUT: operations could be processes, connected by
pipes streaming values from one to the other; process
waits when pipe is empty, proceeds concurrently with
preceding one

– communication: streams of ascii chars grouped into
lines

– implicit synchronization: process waits for next value
in its input stream, if not yet available

9

CS314 © AB/BGR

17

2. Coroutines (explicitly serial)

Coroutine flow of control
between S and T: control
always returns to where it last left
off in both S and T.(both have contexts)

S T

Procedure flow of control between
W and V; V is fully executed; then
control returns to W, where it last
left of.

W V
call

call

e.g., S reads lines, finds next word in line of text;
 T processes a word depending on context.

transfer

CS314 © AB/BGR

18

Coroutines (cont’d)
Pseudo-concurrent:

– Synchronization: explicit transfer statement
– Communication: globals or ref parameters in call

– Possible implementation: closures, “cactus stacks”
e.g.,

Coroutine from_to_by(from, to, by:int; ref j: int; ref done: bool; caller:coroutine)

j := from

done:= (from >= to)

detach //wait till someone resumes (transfers back)

 loop

 { j += by

done := (j >= to)

 transfer(caller) //transfer control to caller

 }

end from_to_by

Iterator <from,from+by,
from+by+by,...>
as a coroutine.
“Yields” via reference
parameter j;
“terminates” via done;

10

CS314 © AB/BGR

19

3. Rendezvous

• 2 threads, C and S
• Synchronization:

– one thread (‘client’/C) offers a hand to S;
– the other thread (‘server’/S) accepts hand (from

anyone);
– when hands meet, shake (“rendezvous” - meeting)
– Whichever one arrives first at the rendezvous has to wait

for the other one.
– Server may accept from multiple clients

• Communication : allow in/out parameters in “handshake”
at rendezvous

• Mutual exclusion is enforced during rendezvous
– Body of accept clause acts as critical section

CS314 © AB/BGR

20

P
begin

Q.synch

Q has entry synch
begin

accept synch do
 ...

end synch

end Qend P

server_name . entry_name

entry_name

client/caller server/callee

11

CS314 © AB/BGR

21

Ada Syntax

• entry call

<server_name>.<entry_name>

• entry

accept <entry_name>(args)

 do
 { sequence of statements,

 executed without interruption}

end <entry_name>

• non-deterministic choice of entries
select

 accept Entr1 do

…

end Entr1;

or

accept Entr2(param) do

…

end Entr2;

end select

but only those are considered which are ready

for rendezvous; so server blocks only if neither

Entr1 or Entr2 are called at this point.

CS314 © AB/BGR

22

More Ada

• Even more general: guarded entries:
select when expr1 => accept X do

…
end X;

 or when expr2 => accept Y do
…
end Y;

end select;

– all guards evaluated when select is entered; an alternative
is “open” if its guard is true

– act as regular select, but only on the open alternatives
• (if all alternatives are closed, error)

– when blocked, look for new entries opening up

12

CS314 © AB/BGR

23

An example: producer/consumer problem

• Producer gets pieces of data (at some rate) and
“massages” them, before passing them on

• Consumer “chews” the received data and then spits it out
• Each act at their own rate
• To allow producer to move faster (or ...), “bounded

queue” may be available to hold values not yet chewed

• Problems to watch for:
– safety: “dropped” input;

– no concurrency
– deadlock

CS314 © AB/BGR

24

Bad Solution with no global variable

task producer
body{

c: char;
loop{

get(c);
c := massage(c);
g := c}

task consumer
body{

d: char;
loop{

d := g
d :=chew (d);
put(d);
}

}

Problem:
producer can race ahead and
overwrite a value before
consumer gets to it:

g:= c1
g:=c2
d:=g

global
variable
 g

13

CS314 © AB/BGR

25

Good solution -- with a buffer task

task pool
entry add (x: in char);
entry remove (x: out char);

body{
 declare and initialize a
 private set or queue Q;

loop{ select
• when (Q not full) =>

accept add(v);
add v to back of Q;

end enter;
or
 • when (Q not empty) =>

accept remove(v)
remove front of Q into v;

end leave;
end select}

end loop}
 }

task type producer
body{

c: char;
loop{

get(c);
c := massage(c);
pool.add(c);
}

}

task type consumer
body{

d: char;
loop{

pool.remove(d);
d=chew (d);
put(d);
}

}

CS314 © AB/BGR

26

Putting it all together (in Ada)

procedure main {
 task pool { ... }; //single process named buffer launched at elaboration
begin
 c: consumer; //proces c of task type consumer launched at elaboration;

refers to global task called pool
 p: producer;
do
 null;
end;

Trace:
– alternating producer and consumer

– faster producer

– faster consumer

– multiple consumers c,c2,c3:consumer;

– multiple producers p,pA,:producer;

