ntroduction

198:314, Sects1-3
Principles of Programming
Languages
Fall 2001

Prof. Barbara G. Ryder
Core 311, 732-445-3699
ryder @cs.rutgers.edu
http://www.cs.rutger s.edu/~ryder

1, CS314 Fall01, BGR

Introduction

Introduction

Administrivia

Why study PL s?

Paradigms. imper ative, functional, object-oriented,
logic

History of PLs

1, CS314 Fallo1, BGR

198:314 Fall 2001

» Classwebpage

http://remus.rutger s.edu/cs314

Look at for courseinformation, rules, grading, important dates, etc.
Read policy on academic dishonesty

Co-ordinated class, all programming pr ojects, book homeworks and
testsare sameacrossall lectures

* MWS5 Lecturewebpage

http://remus.rutger s.edu/cs314/f2001/ryder/

L ecture notes available online in pdf

Only print out 2-up or 4-up to save paper

Recitation attendance and participation countsin your final grade

» Four programming projects posted and submitted
for grading electronically

Introduction 1, CS314 Fall01, BGR

Syllabus

* Introduction

* Formal Languages- RE’s, FSA’s

» Logic Programming (Prolog)

* Namesand Binding

* Imperative Programming (C)

» Block Structure

* Object-oriented Programming (C++)
« Types

* Functional Programming (Scheme)
» Formal Languages- Grammars

e Concurrency

Introduction 1, CS314 Fal01, BGR

Course Goals

» Togain understanding of basic structures of
programming languages
— Types, control structures, naming conventions

» Tostudy different language paradigms
— Toensurean appropriate language is selected for atask
— Object-oriented, functional, imperative, logic

* To make learning new programming languages
easier by knowing shared features

Introduction 1, CS314 Fall01, BGR

What is a programming
language?

“alanguage intended for use by a person to express a process
by which a computer can solve a problem” -Hope and

Jipping

“aset of conventionsfor communicating an algorithm” - E.
Hor owitz

“ theart of programmingistheart of organizing complexity” -
Dijkstra, 1972

Introduction 1, CS314 Fal01, BGR

Why learn more than one PL?

» Each language paradigm encour ages thinking about
aproblem in a particular manner
— Finding a natural match between problem and PL

» Somewhat different functionality supplied by
different paradigms

» Computer professionals must be multi-lingual
— PLschangeover time as computer architecture changes
— Specific applications sometimes result in specialized PL s

— Need to under stand each PL s functionality and
limitations

Introduction 1, CS314 Fall01, BGR

Imperative Paradigm

* Underlying notion of an abstract machine

— Von Neumann architecture
» Store (memory)
e Accumulator (ALU)
» Load/storeinto memory

— Key operation: assignment

Introduction 1, CS314 Fal01, BGR

Imperative PLs

Sum up twice each

number from 1to N. SUM = 0
DO 11 K=1,N
Fortran SUM = SUM + 2*K
11 CONTINUE
sum = 0;
C | for (k = 1; k <= n; ++k)
sum += 2*Kk;
sum = 0;
Pascal for k := 1 to n do
sum := sum + 2*K;

Introduction 1, CS314 Fal01, BGR

* Process

Functional Paradigm

of problem solution expressed as a sequence

of operations on the data

— (Pure) value binding through parameter passing

— No store accessible through names

— Noiteration

— Key operation: function application (with recursion)

Introduction 1, CS314 Fal01, BGR

10

Functional Paradigm

(define (sum n)

Scheme (if (=n0)

0

G (*n2) (sum (- n 1)))

)

(sum 4) evaluates to 20

Introduction 1, CS314 Fall01, BGR 11

Logic Paradigm

* Program isaformal description of characteristics
required of a problem solution
— Programstell what should be not how to make it so

— Solutionsthrough a reasoning process called theorem
proving
— Key operation: unification

Introduction 1, CS314 Fal01, BGR 12

Logic Paradigm

sum(0,0).
sum(N,S) - NN is N - 1,
sum(NN, SS),

S is N * 2 + SS. ?- sum(1,2).

yes
2

Prolog ﬁo sum (2,4).
?-sum(20,5).
S = 420
?-sum (X,Y).
X=0=Y

Introduction 1, CS314 Fall01, BGR 13

Object-oriented Paradigm

* Organizesa program to be operations on abstract
representations of the data

— Objectswith data abstraction and information hiding
* Object implementation ishidden from user
— Actions performed on objects (messages)
— Can combinewith imperative or functional paradigm
easly
— Key operation: message passing

Introduction 1, CS314 Fal01, BGR 14

Object-oriented Paradigm

class intSet : public Set
. . Java
{ public: intset(Q { }
//inherits Set add_element(), Set del_element()
//from Set class, defined as a set of Objects
public int sum(){
int s = 0;
SetEnumeration e = new SetEnumeration (this);
while (e. hasMoreElements ()) do
{ s =s + ((Integer)e. nextElement ()).intvalue (); }

return s;

Introduction 1, CS314 Fall01, BGR 15

Translation

» Compilation: trangdation of a program written in a
high-level PL into a form that is executable on the

machine

* Interpretation: a program istransated and executed
one statement at atime

* Most PL systemsarea mixture of thesetwo
— Interpreted: Java, Scheme, Prolog
— Compiled: Fortran, C, C++ cott, p 10

Source 4-[Trandator]—> Intermediate code
Input
Intermediate code>=[Virtual Machine]—» Output

Introduction 1, CS314 Fal01, BGR

16

Compilation

scanner optimizer
! }
parser code generator
| 1
intermediate
code assembler
generator 1
linker |
Compilation

position = initial + rate* 60;

scanner optimizer
v idl:=id2+id3* 60 |
parser code generator
intermediate
code assembler
generator l
linker |

Introduction 1, CS314 Fal01, BGR 18

Compilation

b 4
scanner _-- = parsetree
I \
v -7 idl/ +
parser |~ ~ . | symbol table / N\
(position, ...) id2 *
A\ 4 . ey
intermediate E'rr;tt;al’)) /
code L id3 int-to-real
generator ‘
! - 60
‘o [tmpl= inttoreal (60)
tmp2 =id3* tmpl
tmp3 =id2 + tmp2
Introduction 1, CS314 Fal01, BGR Idl = tmp3 19
Compilation
tmpl = inttoreal (60) _
tmp2 =id3* tmpl |[*~ |optimizer
idl=id2 + tmp2 l
code generator
movf id3, R3 -
mulf #60.0,R2 | -~ l
movf id2, R1
addf R2, Rl assembler. |
movi R1,id1 l move R1, R-base, R-offset

Introduction 1, CS314 Fal01, BGR

movf R1, 45733

20

Desiderata for PL Design

- Readability
— comments, names, (...) syntax
 Simpletolearn

» Orthogonal

— small number of concepts combineregularly and systematically
(without exceptions)

* Portability
— language standar dization

* Abstraction
— data and control abstractions

Introduction 1, CS314 Fall01, BGR

21

History of PLs

* Prehistory
— 300 B.C. Greece, Euclid invented the greatest common
divisor algorithm - oldest known algorithm
— ~1820-1850 England, Charles Babbage invented 2
mechanical computational devices
« difference engine
 analytical engine
» Countess Ada Augusta of L ovelace, first computer programmer
— Precursorsto modern machines
* 1940's United States, ENIAC developed to calculate trajectories

Introduction 1, CS314 Fal01, BGR

22

11

History of PLs - 2

» 1950’'s United States, first high-level PLsinvented

— Fortran 1954-57, John Backus (IBM on 704) designed for
numerical scientific computation
« fixed format for punched cards
* implicit typing
« only counting loops, if test versuszero
» only numerical data

» 1957 optimizing Fortran compiler trandatesinto code as efficient
as hand-coded

Introduction 1, CS314 Fall01, BGR 23

History of PLs - 3

— Algol60 1958-60, designed by inter national committee for
numerical scientific computation [Fortran]
* block structurewith lexical scope
« freeformat, reserved words
» whileloops, recursion
« explicit types
* BNF developed for formal syntax definition
— Cobol 1959-60, designed by committeein US,
manufacturersand DoD for business data processing
* records
» focuson file handling
» English-like syntax

Introduction 1, CS314 Fal01, BGR 24

12

History of PLs - 4

— APL 1956-60 Ken lverson, (IBM on 360, Harvard)
designed for array processing
« functional programming style
— LISP 1956-62, John McCarthy (MIT on IBM 704,
Stanford) designed for non-numerical computation
« uniform notation for program and data
» new conditional controal structure (COND)
e recursion as main control structure
— Snobol 1962-66, Farber, Griswold, Polansky (Bell Labs)
designed for string processing
» powerful pattern matching

Introduction 1, CS314 Fall01, BGR 25

Hisory of PLs - 5

— PL/I 1963-66, IBM designed for general purpose
computing [Fortran, Algol60, Cobol]
 user controlled exceptions
» multi-tasking
— Simula67 1967, Dahl and Nygaard (Norway) designed as
a simulation language [Algol60]
 data abstraction
* inheritance of properties
— Algol68 1963-68, designed for general purpose computing
[Algol60]
« orthogonal language design
* interesting user defined types

Introduction 1, CS314 Fal01, BGR 26

13

History of PLs - 6

— Pascal 1969, N. Wirth(ETH) designed for teaching
programming [Algol60]
* 1 passcompiler
« call-by-value semantics
— Prolog 1972, Colmerauer and Kowalski designed for
Artificial Intelligence applications
« theorem proving with unification as basic operation
* logic programming
e Recent
— C 1974, D. Ritchie (Bell Labs) designed for systems
programming
+ allows accessto machine level within high-level PL
« efficient code generated

Introduction 1, CS314 Fall01, BGR 27

History of PLs - 7

— Clu 1974-77, B. Liskov (MIT) designed for simulation
[Simula]
 supportsdata abstraction and exceptions
* precise algebraic language semantics
* attempt to enable verification of programs
— Smalltalk mid-1970s, Alan Kay (Xerox Parc), considered
first real object-oriented PL, [Simula]
* encapsulation, inheritance
 easy to prototype applications
* hidesdetails of underlying machine
— Scheme mid-1970s, Guy Steele, Gerald Sussman (MIT)
« Static scoping and first-class functions

Introduction 1, CS314 Fal01, BGR 28

14

History of PLs - 8

— Concurrent Pascal 1976 Per Brinch Hansen (U Syracuse)
designed for asynchronous concurrent processing
[Pascal]

» monitorsfor safe data sharing

— Modula 1977 N. Wirth (ETH), designed language for
lar ge softwar e development [Pascal]

« to control interfaces between sets of procedures or modules
* real-time programming

— Ada 1979, US DoD committee designed as gener al

purpose PL
« explicit parallelism - rendezvous
» exception handling and generics (packages)

Introduction 1, CS314 Fall01, BGR 29

History of PLs -9

— C++ 1985, Bjorne Stroustrup (Bell Labs) general purpose
* goal of type-safe object-oriented PL
» compile-timetype checking
 templates

— Java ~1995, J. Godling (SUN)
» aimed at portability across platform through use of JIVM -
abstract machineto implement the PL
» aimed to fix some problems with previous OOPL s
" multipleinheritance
" static and dynamic objects
* ubiquitous exceptions
« thread objects

Introduction 1, CS314 Fal01, BGR 30

15

