
1

Introduction 1, CS314 Fall01, BGR 1

198:314, Sects1-3198:314, Sects1-3
Principles of ProgrammingPrinciples of Programming

LanguagesLanguages
Fall 2001Fall 2001

Prof. Barbara G. Ryder

Core 311, 732-445-3699
ryder@cs.rutgers.edu

http://www.cs.rutgers.edu/~ryder

Introduction 1, CS314 Fall01, BGR 2

IntroductionIntroduction

• Administrivia

• Why study PLs?
• Paradigms: imperative, functional, object-oriented,

logic
• History of PLs

2

Introduction 1, CS314 Fall01, BGR 3

198:314 Fall 2001198:314 Fall 2001

• Class webpage
–– http://http://remusremus..rutgersrutgers..eduedu/cs314/cs314
– Look at for course information, rules, grading, important dates, etc.
– Read policy on academic dishonesty
– Co-ordinated class, all programming projects, book homeworks and

tests are same across all lectures

• MW5 Lecture webpage
– http://remus.rutgers.edu/cs314/f2001/ryder/
– Lecture notes available online in pdf
– Only print out 2-up or 4-up to save paper
– Recitation attendance and participation counts in your final grade

• Four programming projects posted and submitted
for grading electronically

Introduction 1, CS314 Fall01, BGR 4

SyllabusSyllabus

• Introduction
• Formal Languages - RE’s, FSA’s
• Logic Programming (Prolog)
• Names and Binding
• Imperative Programming (C)
• Block Structure
• Object-oriented Programming (C++)
• Types
• Functional Programming (Scheme)
• Formal Languages - Grammars
• Concurrency

3

Introduction 1, CS314 Fall01, BGR 5

Course GoalsCourse Goals

• To gain understanding of basic structures of
programming languages
– Types, control structures, naming conventions

• To study different language paradigms
– To ensure an appropriate language is selected for a task
– Object-oriented, functional, imperative, logic

• To make learning new programming languages
easier by knowing shared features

Introduction 1, CS314 Fall01, BGR 6

What is a programmingWhat is a programming
language?language?

“a language intended for use by a person to express a process
by which a computer can solve a problem” -Hope and
Jipping

“a set of conventions for communicating an algorithm” - E.
Horowitz

“ the art of programming is the art of organizing complexity” -
Dijkstra, 1972

4

Introduction 1, CS314 Fall01, BGR 7

Why learn more than one PL?Why learn more than one PL?

• Each language paradigm encourages thinking about
a problem in a particular manner
– Finding a natural match between problem and PL

• Somewhat different functionality supplied by
different paradigms

• Computer professionals must be multi-lingual
– PLs change over time as computer architecture changes
– Specific applications sometimes result in specialized PLs
– Need to understand each PLs functionality and

limitations

Introduction 1, CS314 Fall01, BGR 8

Imperative ParadigmImperative Paradigm

• Underlying notion of an abstract machine
– Von Neumann architecture

• Store (memory)

• Accumulator (ALU)
• Load/store into memory

– Key operation: assignment

5

Introduction 1, CS314 Fall01, BGR 9

Imperative Imperative PLsPLs

Fortran

C

 SUM = 0
 DO 11 K=1,N
 SUM = SUM + 2*K
11 CONTINUE

sum = 0;
for (k = 1; k <= n; ++k)
 sum += 2*k;

sum := 0;
for k := 1 to n do
 sum := sum + 2*k;

Pascal

Sum up twice each
number from 1 to N.

Introduction 1, CS314 Fall01, BGR 10

Functional ParadigmFunctional Paradigm

• Process of problem solution expressed as a sequence
of operations on the data
– (Pure) value binding through parameter passing
– No store accessible through names
– No iteration
– Key operation: function application (with recursion)

6

Introduction 1, CS314 Fall01, BGR 11

Functional ParadigmFunctional Paradigm

(define (sum n)
 (if (= n 0)
 0
 (+ (* n 2) (sum (- n 1)))
)
)

(sum 4) evaluates to 20

Scheme

Introduction 1, CS314 Fall01, BGR 12

Logic ParadigmLogic Paradigm

• Program is a formal description of characteristics
required of a problem solution
– Programs tell what should be not how to make it so

– Solutions through a reasoning process called theorem
proving

– Key operation: unification

7

Introduction 1, CS314 Fall01, BGR 13

Logic ParadigmLogic Paradigm
sum(0,0).
sum(N,S) :- NN is N - 1,
 sum(NN, SS),
 S is N * 2 + SS. ?- sum(1,2).

yes
?- sum (2,4).
no
?-sum(20,S).
S = 420
?-sum (X,Y).
X = 0 = Y

Prolog

Introduction 1, CS314 Fall01, BGR 14

Object-oriented ParadigmObject-oriented Paradigm

• Organizes a program to be operations on abstract
representations of the data
– Objects with data abstraction and information hiding

• Object implementation is hidden from user

– Actions performed on objects (messages)
– Can combine with imperative or functional paradigm

easily
– Key operation: message passing

8

Introduction 1, CS314 Fall01, BGR 15

Object-oriented ParadigmObject-oriented Paradigm
class intSet : public Set
{ public: intSet() { }
//inherits Set add_element(), Set del_element()
//from Set class, defined as a set of Objects

public int sum(){
int s = 0;
SetEnumeration e = new SetEnumeration (this);
while (e. hasMoreElements ()) do
{ s =s + ((Integer)e. nextElement ()).intValue (); }
return s;

}
}

Java

Introduction 1, CS314 Fall01, BGR 16

TranslationTranslation

• Compilation: translation of a program written in a
high-level PL into a form that is executable on the
machine

• Interpretation: a program is translated and executed
one statement at a time

• Most PL systems are a mixture of these two
– Interpreted: Java, Scheme, Prolog
– Compiled: Fortran, C, C++

Translator

Virtual Machine

Source Intermediate code

Input
Intermediate code Output

Scott, p 10

9

Introduction 1, CS314 Fall01, BGR 17

CompilationCompilation

scanner

parser

intermediate
code
generator

optimizer

code generator

assembler

linker

Introduction 1, CS314 Fall01, BGR 18

CompilationCompilation

scanner

parser

intermediate
code
generator

position = initial + rate * 60;

id1 := id2 + id3 * 60

optimizer

code generator

assembler

linker

10

Introduction 1, CS314 Fall01, BGR 19

CompilationCompilation

scanner

parser

intermediate
code
generator

symbol table
(position, ...)
(initial, …)
(rate, …)

:= parse tree

id1 +

id2 *

id3 int-to-real

60
tmp1 = inttoreal (60)
tmp2 = id3 * tmp1
tmp3 = id2 + tmp2
id1 = tmp3

Introduction 1, CS314 Fall01, BGR 20

CompilationCompilation

optimizer

code generator

assembler

linker

tmp1 = inttoreal (60)
tmp2 = id3 * tmp1
id1 = id2 + tmp2

movf id3, R3
mulf #60.0, R2
movf id2, R1
addf R2, R1
movf R1, id1 move R1, R-base, R-offset

…

movf R1, 45733

11

Introduction 1, CS314 Fall01, BGR 21

Desiderata for PL DesignDesiderata for PL Design

• Readability
– comments, names, (…) syntax

• Simple to learn

• Orthogonal
– small number of concepts combine regularly and systematically

(without exceptions)

• Portability
– language standardization

• Abstraction
– data and control abstractions

Introduction 1, CS314 Fall01, BGR 22

History of History of PLsPLs

• Prehistory
– 300 B.C. Greece, Euclid invented the greatest common

divisor algorithm - oldest known algorithm

– ~1820-1850 England, Charles Babbage invented 2
mechanical computational devices

• difference engine

• analytical engine
• Countess Ada Augusta of Lovelace, first computer programmer

– Precursors to modern machines
• 1940’s United States, ENIAC developed to calculate trajectories

12

Introduction 1, CS314 Fall01, BGR 23

History of History of PLs PLs - 2- 2

• 1950’s United States, first high-level PLs invented
– Fortran 1954-57, John Backus (IBM on 704) designed for

numerical scientific computation
• fixed format for punched cards
• implicit typing

• only counting loops, if test versus zero
• only numerical data

• 1957 optimizing Fortran compiler translates into code as efficient
as hand-coded

Introduction 1, CS314 Fall01, BGR 24

History of History of PLs PLs - 3- 3

– Algol60 1958-60, designed by international committee for
numerical scientific computation [Fortran]

• block structure with lexical scope
• free format, reserved words

• while loops, recursion
• explicit types

• BNF developed for formal syntax definition

– Cobol 1959-60, designed by committee in US,
manufacturers and DoD for business data processing

• records
• focus on file handling

• English-like syntax

13

Introduction 1, CS314 Fall01, BGR 25

History of History of PLs PLs - 4- 4

– APL 1956-60 Ken Iverson, (IBM on 360, Harvard)
designed for array processing

• functional programming style

– LISP 1956-62, John McCarthy (MIT on IBM704,
Stanford) designed for non-numerical computation

• uniform notation for program and data
• new conditional control structure (COND)

• recursion as main control structure

– Snobol 1962-66, Farber, Griswold, Polansky (Bell Labs)
designed for string processing

• powerful pattern matching

Introduction 1, CS314 Fall01, BGR 26

Hisory Hisory of of PLs PLs - 5- 5

– PL/I 1963-66, IBM designed for general purpose
computing [Fortran, Algol60, Cobol]

• user controlled exceptions
• multi-tasking

– Simula67 1967, Dahl and Nygaard (Norway) designed as
a simulation language [Algol60]

• data abstraction

• inheritance of properties

– Algol68 1963-68, designed for general purpose computing
[Algol60]

• orthogonal language design
• interesting user defined types

14

Introduction 1, CS314 Fall01, BGR 27

History of History of PLs PLs - 6- 6
– Pascal 1969, N. Wirth(ETH) designed for teaching

programming [Algol60]
• 1 pass compiler
• call-by-value semantics

– Prolog 1972, Colmerauer and Kowalski designed for
Artificial Intelligence applications

• theorem proving with unification as basic operation
• logic programming

• Recent
– C 1974, D. Ritchie (Bell Labs) designed for systems

programming
• allows access to machine level within high-level PL
• efficient code generated

Introduction 1, CS314 Fall01, BGR 28

History of History of PLs PLs - 7- 7

– Clu 1974-77, B. Liskov (MIT) designed for simulation
[Simula]

• supports data abstraction and exceptions
• precise algebraic language semantics

• attempt to enable verification of programs

– Smalltalk mid-1970s, Alan Kay (Xerox Parc), considered
first real object-oriented PL, [Simula]

• encapsulation, inheritance
• easy to prototype applications

• hides details of underlying machine

– Scheme mid-1970s, Guy Steele, Gerald Sussman (MIT)
• Static scoping and first-class functions

15

Introduction 1, CS314 Fall01, BGR 29

History of History of PLs PLs - 8- 8

– Concurrent Pascal 1976 Per Brinch Hansen (U Syracuse)
designed for asynchronous concurrent processing
[Pascal]

• monitors for safe data sharing

– Modula 1977 N. Wirth (ETH), designed language for
large software development [Pascal]

• to control interfaces between sets of procedures or modules

• real-time programming

– Ada 1979, US DoD committee designed as general
purpose PL

• explicit parallelism - rendezvous

• exception handling and generics (packages)

Introduction 1, CS314 Fall01, BGR 30

History of History of PLs PLs - 9- 9

– C++ 1985, Bjorne Stroustrup (Bell Labs) general purpose
• goal of type-safe object-oriented PL

• compile-time type checking
• templates

– Java ~1995, J. Gosling (SUN)
• aimed at portability across platform through use of JVM -

abstract machine to implement the PL
• aimed to fix some problems with previous OOPLs

♦ multiple inheritance

♦ static and dynamic objects

• ubiquitous exceptions
• thread objects

