
Lexical Analysis-2  BGRyder Spring 99
1

Lexical Analysis - 2

• More regular expressions
• Finite Automata

– NFAs and DFAs

• Scanners
• JLex - a scanner generator

Lexical Analysis-2  BGRyder Spring 99
2

Regular Expressions in JLex
Symbol - Meaning

. Matches a single character (not newline)

* Matches 0 or more copies of preceding RE
+ Matches 1 or more copies of preceding RE

? Matches 0 or 1 occurrence of an RE

“…” Everything it quotes is matches EXACTLY

^ Matches the beginning of a line

$ Matches the end of a line

[] Character class = matches any character listed; [^]
implies a match of any character NOT listed

() Groups a series of REs into a new RE

Lexical Analysis-2  BGRyder Spring 99
3

REs in JLex
Symbol - Meaning

{ } Control for repeated matching a specific number of
times; a{1,3} means match 1,2, or 3 instances of a

\ Used to match a metacharacter or control character; \n
matches newline; * is the character *

| Means match either the RE proceeding it OR the RE
following it

RE1/RE2 Means match RE1 but only when followed by RE2;
0/1 will match the 0 in 01 but not in 02

Lexical Analysis-2  BGRyder Spring 99
4

Exercise

• Problem: write an RE to match a quoted
string such as “Hello”.
– Need to decide if a quoted string can go across

more than 1 line of text
– Note: JLex REs are line-input-oriented, unlike

formal REs
– Also, JLex REs make the longest matches

possible within a string of characters
– If multiple REs are given to JLex and several

match the same longest expression, the first
matching RE is used.

Lexical Analysis-2  BGRyder Spring 99
5

Finite Automata

• Automata that recognize strings defined by a
regular expression

• (States, Input symbols, Transitions,
Start_state, Set of Final_states)
– Transitions between states occur on specific

input symbols

• Deterministic automata have only 1
transition per state on a specific input and do
not allow transition on the empty string

Lexical Analysis-2  BGRyder Spring 99
6

Finite Automata

• Language recognized by automaton is set of
strings it accepts by starting in the start
state, using transitions corresponding to
input symbols in the input string, and
processing all input and finishing in a final
state.

RE for integers:
[0-9] +

A B
0|1|…|9

Start state Final state

0|1|…|9

Lexical Analysis-2  BGRyder Spring 99
7

FAs

• Nondeterministic finite automaton
<{states},
{input symbols} (terminal symbols of a grammar)
Transition function ((state,input)--> state),
Start state
{Final states}>

• NFA allows more than 1 transition on the
same input symbol and/or transitions on ε

• Deterministic FA allows only 1 transition per
input symbol and no ε transitions

Lexical Analysis-2  BGRyder Spring 99
8

FAs

• Theoretical results:
– Set of languages recognizable by NFAs is same as

those recognizable by DFAs.
– There is an algorithm to check for equivalence of

two languages recognized by 2 different FAs.

RE for reals:
([0-9]+ \. [0-9]*) |
([0-9]* \. [0-9]+)
Shown: [0-9]+ .

0,1,…,9 0,1,…,9 .

.

NFA

DFA
0,1,…,9

0,1,…,9

Lexical Analysis-2  BGRyder Spring 99
9

Practical FAs

• Encode transitions as a table
– Each column is an input symbol
– Each row is a state
– Entry at (s1,i1) is state to transition to when in

state s1 and see input i1

• Scanner has to try to find longest match in
input to a possible token
– May have to look beyond end of token to do this!

Lexical Analysis-2  BGRyder Spring 99
10

RE to NFA Conversion

• Straightforward translation using composition
operators of REs

s

s

f
ε

For RE ε,

For RE a,
terminal symbol,

f
a

For w,t REs with
corresponding
NFAs N(w), N(t),
w|t yields,

s f

N(w)

N(t)ε

ε ε

ε

f’s’

s’’ f’’

Lexical Analysis-2  BGRyder Spring 99
11

RE to NFA Conversion

For w,t REs with
corresponding
NFAs N(w), N(t),
w t yields,

N(w) N(t)

s’ f’ f’’

For w RE, w* yields, N(w)s f

s’ f’

ε

ε εε

For (w) RE, use
N(w).

Lexical Analysis-2  BGRyder Spring 99
12

RE to NFA Conversion

• These drawings follow the Aho, Sethi,
Ullman Compiler text and are equivalent to
those in Appel

• For w+ use fact that w+ = w w*
• For w? use fact that w? = w | ε
• [abc] = a | b | c
• For “abc” use fact that “abc” = a b c

Lexical Analysis-2  BGRyder Spring 99
13

How does an NFA compute?

• Start off in the start state
• Compute set S of all states reachable on ε

transitions.
• Given next input symbol is a, calculate set of

states T, reachable as transition(s,a) where
s∈ S

• Repeat steps 2,3 until input is exhausted. If
final set of states contains a final state, then
string has been recognized.

Lexical Analysis-2  BGRyder Spring 99
14

NFA to DFA Conversion

• Deterministic computation is desirable if we
want a write a scanner as a program
– Need to convert NFA to equivalent DFA
– Then can simulate DFA recognition process

using tables in program to describe transitions
– If process ends up in a final state, a token has

been recognized

Lexical Analysis-2  BGRyder Spring 99
15

NFA to DFA Conversion

• Intuition: whenever there is an ε transition
out of a state s, the NFA may go to any of
the states reachable in this manner without
consuming any input symbols. Call these
states the ε-closure of state s.
– By looking at ε-closures, we form sets of related

states in the NFA; these become states in the
corresponding DFA

– Edges in the DFA correspond to sets of edges in
the NFA (connecting different ε-closure sets of
states)

Lexical Analysis-2  BGRyder Spring 99
16

NFA to DFA Conversion

• DFA derived is not the most efficient
(smallest possible) , but is usually of practical
size

• There are ways of obtaining an optimal DFA
by minimizing the numbers of states

Lexical Analysis-2  BGRyder Spring 99
17

Conversion Algorithm

• Need two primitive functions
– ε−closure(T), for T a set of states in the NFA

• Returns a set of NFA states reachable from state s∈T
by ε-transitions

– move(T, a), for T a set of states in the NFA
• returns a set of NFA states to which there is a

transition on a from some NFA state s∈T

• Build set of states (D) and transitions
(Dtrans) for the DFA

Lexical Analysis-2  BGRyder Spring 99
18

Conversion Algorithm
Assume all states in NFA are unmarked initially.
Let S = ε-closure(start state of NFA).
Let D = {S}.
while ∃ an unmarked state T ∈ D do

Mark T;
∀ input symbols a do
{ U = ε-closure (move (T, a));
 if U ∉ D then {add unmarked U to D};
 Dtrans(T,a) = U;
}

endwhile

Lexical Analysis-2  BGRyder Spring 99
19

Possible Problems

• Theoretically, for NFA having n states can
get DFA with 2n states, but this doesn’t
happen in practice.

• Token is recognized if the ending state of the
DFA contains an original final state of the
NFA.
– In case of choice, use final state which represents

the earliest rule in the list of productions for
tokens

Lexical Analysis-2  BGRyder Spring 99
20

Optimal DFA

• There are algorithms for constructing the
minimal (smallest) DFA
– Idea:

• Assume every state can transition on every input (can
create an error state to do this).

• Try to prove that computation starting at states T and
S differs on at least 1 input. If cannot find such an
input can merge S and T. Resulting state has the
union of their transitions. (ASU, pp141ff)

