Machine | ndependent
Optimizations

 Two classical data-flow problems
— Reaching definitions
— Livevariables
 UD, DU Chains

machindepOpts, Spring 99 © by B.G. Ryder



Definitions

Flow analysis.

Fact finding about a program before its
execution

Control-flow analysis:
Discer ning possible execution paths.

Data-flow analysis:

Deter mining infor mation about modification,

preservation, and use of data entitiesin a
program.

Two classic data-flow problems

Reaching definitions (REACH), Live uses of
variables (LIVE)

Def-use and Use-def chains, built from

REACH and LIVE, used for many
optimizations

machindepOpts, Spring 99 © by B.G. Ryder 2



Reaching Definitions (REACH)

Definition:

A statement that can modify the value of a
variable.

A definition of a variable x at node Kk
reaches node n if thereis a definition-
clear path from k to n.

®x

..

[
>

machindepOpts, Spring 99 © by B.G. Ryder



Live Uses of Variables (LI VE)

Use:

An appearance of a variable as an
operand in 3 address code.

A use of a variable x at node n is live on
exit from node k if there is a definition-
clear path for x from k to n.

®x

..

[
>

machindepOpts, Spring 99 © by B.G. Ryder



REACH and LIVE

UD- Chain: = —=—=—=-=- >

Links each use of variable x to
definition(s) which reach that use.

DU - Chain: —

Links each definition of variable x to

those uses which that definition can
reach.

machindepOpts, Spring 99 © by B.G. Ryder



Global Optimizations Needing
DU - UD Chains

e Live ranges for global register
allocation(DU)

e Dead code elimination (DU)
« Code motion (UD)

e Strength reduction (UD)

e Test elision (UD)

e Constant propagation (UD)

 Copy propagation (DU)

machindepOpts, Spring 99 © by B.G. Ryder



Reaching Definitions

Reach(ml) Reach(m2) Reach(m3)

OO

forward
data-flow
problem

machindepOpts, Spring 99 © by B.G. Ryder



Data-Flow Equations

REACH

Reach(j) = \
E { Reach(m) C pres(m) E dgen(m) }
m | pred()
where:
pres(m) is the set of defs

preserved through node m

dgen(m) is the set of defs
generated at node m

pred()) is the set of iImmediate
predecessors of node |

machindepOpts, Spring 99 © by B.G. Ryder



Live Uses of Variables

@ Live()

Live(m1) Live(m?2) Live(m3)

backward
data-flow
problem

machindepOpts, Spring 99 © by B.G. Ryder



Data-Flow Equations

LIVE

Live()) =
E {Live(m) Cupres(m) E ugen(m)}
m1 succ()

where:

upres(m) is the set of uses
preserved through node m

ugen(m) is the set of uses
generated at node m

succ(]) is the set of Immediate
successors of node |

machindepOpts, Spring 99 © by B.G. Ryder 10



Data-flow Equations

Compare with textbook’s equations, in[n]
holds on entry to the node; out[n]
holds on exit from the node.

in[n] := use[n] E (out[n] - def[n])

out[n] := E in[s]
s1 succ(n) @
out[n]

IN[Ss1] IN[s2]

out[sl] out[sZ]
out[n] = (use[s1] E (out[s1] - def[s1])) E
(use[s2] E (out[s2] - def[s2]))
where use==ugen,
out - def == out C upres

machindepOpts, Spring 99 © by B.G. Ryder 1



Constant Propagation

| =1

machindepOpts, Spring 99 © by B.G. Ryder

12



Constant Propagation

q: =5*j +3

At program point p, UD chain shows all definitions
reaching this use are constant - but not the same
constant.

\ No propagation.

machindepOpts, Spring 99 © by B.G. Ryder 13



Constant Propagation

| =1

= 8
At program point g, UD chain shows all defs

reaching this use are constant - and the same

constant. "
machindepOpts, Spring 99 © by B.G. Ryder




