
Parsing-1  BGRyder Spring 99 1

Parsing - 1

• What is parsing?
• Shift-reduce parsing

– Shift-reduce conflict
– Reduce-reduce conflict

• Operator precedence parsing

Parsing-1  BGRyder Spring 99 2

Parsing

• Parsing is the reverse of doing a derivation
• By looking at the terminal string, effectively

try to build the parse tree from the bottom
up

• Finding which sequences of terminals and
nonterminals form the right hand side of
production and reducing them to the left
hand side nonterminal

Parsing-1  BGRyder Spring 99 3

Shift-reduce Parsing

• Handle- substring which is right hand side
of some production; corresponds to the last
expansion in a rightmost derivation

• Replacement of handle by its corresponding
nonterminal left hand side, results in
reduction to the distinguished nonterminal
by a reverse rightmost derivation

• Parse works by shifting symbols onto the
stack until have handle on top; then reduce;
then continue

Parsing-1  BGRyder Spring 99 4

Example
S → Ε (1)
Ε → Ε + Τ (2)
Ε → T (3)
T → id (4)

Rightmost derivation of
a+b+c, handles in red
S → E
 → Ε + Τ
 → Ε + id

→ Ε + Τ + id
 → Ε + id + id
 → T + id + id
 → id + id + id

S

E

E + T

idE + T

idT

id

Parsing-1  BGRyder Spring 99 5

Example
Actions: shift, reduce, accept, error
Stack Input Action
$ id1 + id2 + id3 $ shift
$ id1 + id2 + id3 $ reduce (4)
$ T + id2 + id3 $ reduce (3)
$ E + id2 + id3 $ shift
$ E + id2 + id3 $ shift
$ E + id2 + id3 $ reduce(4)
$ E + T + id3 $ reduce (2)
$ E + id3 $ shift
$ E + id3 $ shift
$ E + id3 $ reduce (4)
$ E + T $ reduce(2)
$ E $ reduce (1)
$ S $ accept

S → Ε (1)
Ε → Ε + Τ (2)
Ε → T (3)
T → id (4)

Parsing-1  BGRyder Spring 99 6

Possible Problems

• Can get into conflicts where one rule implies
shift while another implies reduce
S → if E then S | if E then S else S

On stack: if E then S
Input: else
Should shift trying for 2nd rule or reduce by first

rule?

Parsing-1  BGRyder Spring 99 7

Possible Problems

• Can have two grammar rules with same
right hand side which leads to reduce-reduce
conflicts
A → α and B → α both in grammar
When α on top of the stack, how know which
production choose? That is, whether to reduce to
A or B?

• In both kinds of conflicts, problem is with the
grammar, not necessarily the language

• Recall, there can be many context-free grammars
corresponding to the same language!

Parsing-1  BGRyder Spring 99 8

Shift-Reduce Parsing

• Actions
– Shift - push token onto stack
– Reduce - remove handle from stack and push on

corresponding nonterminal
– Accept - recognize sentence when stack contains

only the distinguished symbol and input is
empty

– Error - happens when none of the above is
possible; means original input was not a
sentence!

Parsing-1  BGRyder Spring 99 9

Handles

• Any string of terminals and nonterminals
derived from the distinguished nonterminal
is called a sentential form

• If grammar is unambiguous, then each right
sentential form has a unique handle
Z → α A w → α β w,

where α is a mixture of terminals and
nonterminals; β is the handle;

 and w is a string of terminals

*
rm rm

Parsing-1  BGRyder Spring 99 10

A Handle in the Parse Tree

Z

A

β
w

α

Action: reduce β to A

Parsing-1  BGRyder Spring 99 11

Ambiguity Example

Ζ→ E
E → E or E | a

Two rightmost derivations (handles in red):
 Z → E → E or E → E or a → E or E or a → E or a or a →

 a or a or a

 Z → E → E or E → E or E or E → Ε or E or a →
E or a or a → a or a or a

Shift a, reduce to E, shift or, shift a, reduce to E (now have
E or E on stack). In deriv1, reduce E or E to E. In deriv2
shift or and a onto stack. SHIFT-REDUCE conflict.

Parsing-1  BGRyder Spring 99 12

Justification of Handle Use

• How can we be sure that the handle will
always be at the top of the stack?

• Conventions: Greek letters for strings of terminals
and nonterminals. Arabic letters for strings of
terminals only. Capital letters are nonterminals.

• The following is a rightmost derivation:
Case 1: A’s production contains a rightmost

nonterminal B.
Z → α A q → α β B y q → α β γ y q, where

B → γ
*

rm rm rm

Parsing-1  BGRyder Spring 99 13

Justification, cont.

Stack will contain $αβγ with yq in the input.
This will be reduced to $αβB with yq still in

the input.
Handle can’t be below B in the stack or else

the derivation would have to have been:
…X…B → …δ…B with δ in the αβ on the
stack. But this isn’t a rightmost derivation,
because B is to the right of X and X is being
expanded first! #CONTRADICTION

Parsing-1  BGRyder Spring 99 14

Justification, cont.

Therefore handle must contain B and it is not
“buried” in the stack.

Assume the handle is βBy (β or y may be
empty)

Case 2: A’s production does not contain a
nonterminal

 Z → α C x A r→α C x y r→α γ x y r
where A → y and C → γ

*
rmrmrm

Parsing-1  BGRyder Spring 99 15

Justification, cont.

• Stack will contain $αγ with input xyr. This
will be reduced to $αC, and then x and y
will be shifted onto stack. Then $αCxy will
be reduced to $αCxA on the stack with r
remaining in the input.

• So the handle is not buried in the stack.

Parsing-1  BGRyder Spring 99 16

Operator Precedence Parsing

• A simplified bottom up parsing technique
used for expression grammars

• Requires
– No right hand side of rule is empty
– No right hand side has 2 adjacent nonterminals

• Drawbacks
– Small class of grammars qualify
– Overloaded operators are hard (unary minus)
– Parser correctness hard to prove

ASU, Ch 4.6

Parsing-1  BGRyder Spring 99 17

Operator Precedence
• Define three precedence relations

– a < b, a yields in precedence to b
– a > b, a takes precedence over b
– a = b, a has same precedence as b

• Find handle as <====> pattern at top of
stack;

• Check relation between top of stack and
next input symbol

• Basically, ignore nonterminals

Parsing-1  BGRyder Spring 99 18

Example

Z → E
E → Ε ∗ Ε | Ε + Ε | id
Define precedence relations between + and *.

+ < *, * > +, + > +, * > * (last 2 ensure left associativity)

Form table of precedences.

Now parse using the table,

and keep track of the
operand nonterminals, too.

Sometimes can embed error

handling in matrix.

 id + * $
id > > >
+ < > < >
* < > > >
$ < < <

Parsing-1  BGRyder Spring 99 19

Example
Compare top of stack token to next input token.
Stack Compares Input

$ < id1 + id2 * id3 $
$ < id1 > + id2 * id3 $
$ E < + id2 * id3 $
$ E + < id2 * id3 $
$ E + < id2 > * id3 $
$ E + E < * id3 $
$ E + E * < id3 $
$ E + E * < id3 > $
$ E + < E * E > $
$ < E + E > $
$ < E > $
accept

Parsing-1  BGRyder Spring 99 20

Making OP parsing practical

• How to store these precedences compactly?
• Precedence functions

– Find functions f(), g() such that
• f(token1) > g(token2) means token1 > token2

• f(token1)=g(token2) means token1 = token2

• f(token1) < g(token2) means token1 < token2

– Graph partitioning algorithm to find f(),g() if
possible.

Parsing-1  BGRyder Spring 99 21

Precedence Functions

• Form graph from table of precedences

– Nodes formed by f(token1),f(token2),…,g(token1) etc.
• Form equivalence classes of nodes based on the = relation

(equal precedence, e.g., * /)

– Edges show required relations between function values
• If token1 > token2, then f(token1)-->g(token2)

• If token1 < token2, then f(token1)<--g(token2)

– If the graph is acyclic, then can find integer value
assignments for the range values of f,g.

• Let value of f(token1) be the length of the longest path from the
node representing f(token1)

Parsing-1  BGRyder Spring 99 22

Example
 id + * $
id > > >
+ < > < >
* < > > >
$ < < <

f(id) g(id)

g(+) g(*) g($) f(*) f(+)

f($)
Acyclic graph yields
 id + * $
f: 4 2 4 0
g: 5 1 3 0

