
Parsing-4  BGRyder Spring 99
1

Parsing - 4

• Using ambiguous grammars for parsing
• LALR(k) parsing

– Space savings over LR(k)
– Sometimes introduce reduce-reduce conflicts

• Parser generators : Yacc, CUP
– How to use?
– Error recovery

Parsing-4  BGRyder Spring 99
2

Using Ambiguous Grammars

• Sometimes an ambigous grammar will create
a smaller parser than an unambiguous one

• Need to resolve conflicts appropriately by
setting precedences as desired, to preserve
meaning in the grammar
– Often done with expression grammars

• e.g., to get small SLR(1) parser for language on
Parsing3, #8

Parsing-4  BGRyder Spring 99
3

LALR(k) Parsing

• LALR(k) parsers use k lookahead symbols
and combine those states of an LR(k) parser
that have the same items, except for lookahead
symbols

• Provides smaller parsers, usually about the
size of an SLR(k) parser

• But sometimes can introduce reduce-reduce
conflicts in this manner

Parsing-4  BGRyder Spring 99
4

LALR(k) Parsing

• When given erroneous input, sometimes an
LALR(k) parser will do a few extra reductions
which an LR(k) parser would have avoided,
but it never will shift another symbol onto the
stack, beyond those which would be shifted by
an LR(k) parser.

• Can be formed directly from a grammar,
although we will reduce an LR(1) parser to
LALR(1) form

Parsing-4  BGRyder Spring 99
5

Example, ASU p 236

S’ → S trivial language: (cn d)(cm d) for n,m=0,1,2,...
S → C C
C → c C | d

I0 : S’ → .S, $ I2 : S → C . C, $ I3 : C → c . C, c/d
 S → .C C, $ C → .c C, $ C → .c C, c/d

 C → .c C, c/d C → .d, $ C → .d, c/d
 C → . d, c/d

I4 : C → c . C, $
 C → .c C, $

 C → .d, $

C c

c

same LR(0) items, different lookaheads
try to combine into one state

Parsing-4  BGRyder Spring 99
6

LALR(k)

• Complete LALR(1) parser for this language
and can see there are no conflicts introduced

• When merge LR(k) states cannot produce
shift-reduce conflicts, but can produce reduce-
reduce conflicts
e.g., A → c. , d A → c., e two states which when combined

 B → c., e B → c., d produce a reduce-reduce conflict

Parsing-4  BGRyder Spring 99
7

CUP: a Parser Generator

• Yacc 1975 Steve Johnson at AT&T Bell Labs
• CUP, a Java version of Yacc

– Input: CUP directives, Java code, grammar
– Output: Java program which parses the language

described by grammar (i.e., a Grm object)
– Grm class extends java_cup.runtime.lr_parser

class (see proj3/Parse/Parse.java); parse() method
is applied to the Grm object within a try block so
exceptions will be caught properly

Parsing-4  BGRyder Spring 99
8

Parse/Parse.java in proj3
public class Parse {
 public ErrorMsg.ErrorMsg errorMsg;
 public Parse(String filename) {
 errorMsg = new ErrorMsg.ErrorMsg(filename);
 java.io.InputStream inp;
 try {inp=new java.io.FileInputStream(filename);}
 catch (java.io.FileNotFoundException e) {
 throw new Error("File not found: " + filename);}
 Grm parser = new Grm(new Yylex(inp,errorMsg), errorMsg);
 try { parser./*debug_*/parse();}
 catch (Throwable e) {
 e.printStackTrace();
 throw new Error(e.toString());}
 finally { try {inp.close();} catch (java.io.IOException e) {} }
 }
}

check input
file exists

create
new
parsertry to parse input

cleanup

Parsing-4  BGRyder Spring 99
9

Grm.cup
• Input file to the CUP parser generator

– Preamble of CUP directives and grammar rules
• Grammar rules look like:
exp ::= exp PLUS exp {: actions :}
• Directive include identification of terminals and

nonterminals
terminal ID, WHILE, BEGIN, END
non terminal prog, stm, stmlist;
start with prog;

– Actions are given in Java and will be executed as
the parser reduces using this rule.

Parsing-4  BGRyder Spring 99
10

Conflicts

• CUP reports conflicts
– Default is to shift for shift-reduce conflicts
– Default is use rule appearing the earliest in the

grammar for reduce-reduce conflicts
– Normally, we rewrite the grammar when conflicts

are reported

Parsing-4  BGRyder Spring 99
11

Precedence Directives

• Precedence directives
– Specify both associativity of operators and relative

precedence among them
precedence nonassoc EQ, NEQ; lowest prec
precedence left PLUS, MINUS;
precedence right EXP; highest prec

– Use precedence to break shift-reduce conflicts,
given last token on righthand-side of rule

• If rule and token have same precedence then left prec
means reduce, right prec means shift, and nonassoc
means error

Parsing-4  BGRyder Spring 99
12

Limitations

• Not all language constructs can be expressed
in a context-free grammar
– e.g., Correspondence of types of operands to

operator
– e.g., Finding correct kind of l-value on lefthand-

side of assignment statement

• Use semantic analysis phase to check these

Parsing-4  BGRyder Spring 99
13

Local Error Recovery

• Local - adjust the parse stack where the error
was detected
– Can insert error symbol into grammar in order to

go into an error state on improper input
– Then input is discarded until a synchronizing

token is encountered
– Have to be careful when discarding states from

the stack, when associated actions have side effects
• e.g., construct counting matched parentheses

Parsing-4  BGRyder Spring 99
14

Global Error Recovery

• Global - insert or delete token(s) from input
stream at a point before where the error was
detected
– Try to find the smallest set of insertions or

deletions that turn the source into a parsable
string

– Best replacement allows parsing to continue
furthest past current position

Parsing-4  BGRyder Spring 99
15

Burke-Fisher Error Recovery

• Burke-Fisher Error Recovery(1987)
exhaustively tries single token insertion,
deletion or replacement at every point within
k tokens before where the error occurs

• If have N kinds of tokens, there are k+kN+kN
possible deletions, insertions and substitutions
within the k token window (kept on a queue)

• Must delay all semantic actions to prevent
unwanted side effects, until parse is validated

Parsing-4  BGRyder Spring 99
16

Burke-Fisher Error Recovery
• Algorithm uses 2 stacks, current and old, and a

queue of k tokens
– old stack has successfully parsed string so far

(have done actions for reductions to symbols here)
– current stack has rest of possible parse covering

the next k tokens
– queue is k tokens back from endpoint of current

parse

• Can use old stack and queue to reparse string
after replacement, deletion or insertion of
single token into queue

Parsing-4  BGRyder Spring 99
17

Example

num
:=
id

a := 7 ; b := 3 * 4 $

old
stack

num
:=
id
;

new
stack

4 token queue

input

Parsing-4  BGRyder Spring 99
18

Example

;
S

a := 7 ; b := 3 * 4 $

old
stack

*
num
:=
id

new
stack

4 token queue

input

Parsing-4  BGRyder Spring 99
19

Burke-Fisher Error Recovery

• Problems:
– If the semantic action(s) being delayed affect

parsing (e.g., typedef)
– Need to specify values for inserted/replaced tokens

• Common errors can be anticipated with error
correcting code
– e.g., in 0 end to close a scope

