Code Generation - 2

« Global register allocation through graph
coloring
— Liveranges
— Interference graph
— Coloring algorithm

registerAllocationa BGRyder Spring 99

Global Register Allocation

 Picksvaluesto storein registersacross
groupsof basic blocksin the control flow
graph
— Choose using estimates of profitability (saved

loads and stor es) and availability of registers

o Calculateliveranges (regions-- set of traces--
In which avaluewill stay in aregister)
— Liverange may not be entire program

— A value can bein aregister and then in memory
or viceversa

registerAllocationa BGRyder Spring 99

Global Register Allocation

 Map interference between live ranges

— Each liverangeisanodein an undirected graph

— Two live ranges over lapping is shown by placing
an edge between their corresponding nodes

— For k global registers, add ak-cligueto the graph
« k-clique: k nodes all connected to each other

e Usegraph coloring to map registersto ranges
wher e each color representsaregister

— Try to obtain a k-coloring of thisgraph

 Legal coloring: assign colorsto each node in the graph
such that no adjacent nodes are the same color.

registerAllocationa BGRyder Spring 99

Example

1.]:=

2.1:= ..]... I
3.1f() then{j := }(j.l)
4, dse{ =}

K:=] ...

(.1)
k.5)
*(I.Z) (1.2) /Q
| * .
o 0.3/4) (j.3/4
T I (k.8)
: 4 (k.5)
| (j.6)
| .
| v 1 (k.8)
Y (.6
| nterference
Live Ranges Graph

registerAllocationa BGRyder Spring 99

With one node having 5 neighbors,
we may need lots of colors, if
neighbors are inter connected.
Find 3-cliques: (1.2,).3/4,k.5)

(1.2) (1.2,k.5,].6) (1.2,].6,k.8)
so need at least 3 registersto color
(j.3/4) this graph!
(k.8) .1)
(7 k5

(.6) (1.2)

(1.2,j.3k.5)

(j.3/4)
(k.8)

(.6)

registerAllocationa BGRyder Spring 99 >

Example

H (k5 | |
(1.2) A possible 3 coloring.
(.3/4) Bf¥, /
B \ (k.8)
(-6)

registerAllocationa BGRyder Spring 99

Example

al=
bl=
@5 liverangefor al
/ \ liverange for b2
- ho— liverange for a2
ho= a2= liverangefor bl
\\‘p s liverangefor s

‘/‘/ \\“\‘ | nter fer ence shown by overlap

of liverangesin shared nodes

s =al+a? S =bl+b2 :
a1= / ~ and/or edgesin graph.
7
S D /‘
A lk=al*bl*s

v

registerAllocationa BGRyder Spring 99 7

/

bl=

C’b\

az=

b2=| az2=

b2=

AN

x1=

=] Example

Variable renaming may let

us eliminate some inter fer ences.
Thisgraph hasno interference
between x1 and al.

SSA-form: each variable useis
reached by only one definition.

s =al+a2 S =bl+b2

registerAllocation &

~ 7

a4 =f(x1,al)
k=a4*bl*s

BGRyder Spring 99 l

al=

bl=
a2= b2=
b2= az2=

s =al+a? S =bl+b2

xlz\:r"k ‘{ﬁé;j;,»

A lag=t1 (x1,al)
k=a4*bl*s

v

registerAllocationa BGRyder Spring 99

N
S al a2
\
a4
b2
|nterference graph

’ FxT

e '_aIE
VA

a4 I /

/ /

|nterference graph

registerAllocationa BGRyder Spring 99

Example

rn__r2

\/

* |nterferencegraph contains
a4-cliguesocan’'t finda3
coloring

« Meanshaveto spill
something tofind a 3
coloring

 But a4coloringispossble
as shown

10

Optimistic Register Allocation

Chaitin et.al. 1982

Build interference graph

Simplify by removal of easy-to-color nodesto
a stack (degree <Kk)

Spill some value when reach state where all
nodes left have degree 3 k (potential spill)

Select color for each nodein stack order

Restart after removal of spilled node and its
adj acent edges (actual spill)

registerAllocationa BGRyder Spring 99

Optimistic Register Allocation

o Usually 1-2 iterationswork in practice
 Heuristics
— Which nodeto spill? try to estimate which nodeis

Inhibiting the coloring the most

e E.g., minimize estimated spill cost per neighbor of
current node where spill cost = #def points +#use
points weighted by execution frequency

— Which nodeto color next during algorithm?
 Try to havecoloring fail asearly as possible. Why?

« Color urgency - #uncolored neighbor s/#possible colors
| eft

registerAllocationa BGRyder Spring 99 12

Example

coloring with k=3.
stack simplify nodeswith 1,2 neighbors
x1

al assume can color al; now delete

a4
S assume can color s; now delete K\
edges so that b1 (deg 4), al (deg 3) X1 bl
edges so that a2,b2 (deg 2), b1(deg3) / ‘
bl assume can color bl; now delete S al a2

edges so that a2,b2 (deg 1) \ /
az a4
b2
DONE _ —
3 potential spillsin stack b2

registerAllocationa BGRyder Spring 99

Example

Colors: 1, 2, 3
Assignments

b2 1
az 2
bl 3 X1 bl
al can’t color so must be actual / \
il
P S al a2

Redraw interference graph and start
over. \
ad
b2

registerAllocationa BGRyder Spring 99

14

Example

Restart
Colors: 1, 2,3
Assignments
b2
a2
bl
S
ad
x1
SUCCESS

X
=

\
/

N NP W
]

ﬂ

b2

registerAllocationa BGRyder Spring 99 15

|mproved Register Allocation

e Coalescing - try to combine live ranges when

Briggs, et. al. (1994),
Georget+Appel (1996)

can avoid register copiesRs— Rt; check if

can do calculation in Rs.

— Improvement on earlier algorithm

— When coalesce 2 nodes, get a new node with union
of the edges of the 2 previous nodes

— If overdo coalescing, then can create too many
Interferences, but how to tell?

registerAllocation &

BGRyder Spring 99

16

register

When to coalesce?

Need heuristic to guide coalescing decisions

Briggs. Coalesce nodesa and b if resulting
node will have fewer neighborsof degrees k

George: Coalesce nodesa and b if for every
neighbor tof a, talready interfereswith bor t
Isof degree < Kk.

Both strategies are safe, but conservative

Allocationd BGRyder Spring 99

| mproved Algorithm

* Build interference graph categorizing nodes
as move-related or not

o Simplify by removal of non-move-related
easy-to-color nodesto a stack (degree < k)

e Coalesce conservatively on smplified graph;
restart smplify

* Freeze some move-related node of low degree
and make it non-move-related; restart
simplify

registerAllocationa BGRyder Spring 99

lmproved Algorithm, cont

o Spill some value when reach state where all
nodes left have degree 3 k (potential spill)

o Select color for each node in stack order
* Restart after removal of spilled node and its
adj acent edges (actual spill)

VAV

build »simplify+ coal esce-» fr eeze »potential = select »actual -

registerAllocationa BGRyder Spring 99

| mprovements

e |f must spill, may need to undo coalescing
— Simple: undo all coalesces and rebuild graph
— Complex: undo all coalesces AFTER thefirst
potential spill wasidentified
* Precolored nodes - valuesthat must bein
specificregisters (e.qg., for parameter passing)
— Can color other nodeswith those colors, aslong
asthey don’t interfere

— Can’t simplify or spill such nodes so want to keep
thar liveranges short!

registerAllocationa BGRyder Spring 99 20

| mprovements

e Can sometimes coalesce spilled valuesif can
provethelr liverangesdo not interfere (reuse
stor age)

— Get interference graph for spilled nodes

— Coalesce any non-interfering spilled nodes
connected by a move

— Use simplify and select to color the graph with
each color corresponding to shared frame
locations

registerAllocationa BGRyder Spring 99 21

| mprovements

e Rematerialization

— L ook for never-killed calculationsthat are
cheaply redone (in 1 instruction) instead of saved
In aregister

e E.g,, immediate loads of an integer constant,
computing a constant offset from a frame pointer

registerAllocationa BGRyder Spring 99 22

Register Saving and Allocation

e Local variableor compiler temporary should
be allocated to caller-saveregister to avoid
saves

e Valueslive across several levels of procedure
call, should be put in callee-saveregisters
sincethen only 1 saveis necessary

— Can forcethisby making such nodes interfere
with all precolored caller-saveregisters

registerAllocationa BGRyder Spring 99

23

Observations

« Empirical data
— Optimistic coloring gains -2%-48% execution
time improvement
e Interferencegraphsin practicearen’t big

o Compilersshould make constants
recognizable by register allocator for
rematerialization

e Order of coalescing seems significant
— Better to do from inner loopsto outer

registerAllocationa BGRyder Spring 99

24

Observations

o Limited backtracking in thecoloring may be
useful

e Can also split liverangesto decreasethe
number of nodeswith 3 k edges, however too

much splitting makesit harder to select spills

* NP-noise explains anomalous behavior in
heuristic solution of NP-complete problem

registerAllocationa BGRyder Spring 99

25

