
registerAllocation  BGRyder Spring 99 1

Code Generation - 2

• Global register allocation through graph
coloring
– Live ranges
– Interference graph
– Coloring algorithm

registerAllocation  BGRyder Spring 99 2

Global Register Allocation

• Picks values to store in registers across
groups of basic blocks in the control flow
graph
– Choose using estimates of profitability (saved

loads and stores) and availability of registers

• Calculate live ranges (regions -- set of traces--
in which a value will stay in a register)
– Live range may not be entire program
– A value can be in a register and then in memory

or vice versa

registerAllocation  BGRyder Spring 99 3

Global Register Allocation
• Map interference between live ranges

– Each live range is a node in an undirected graph
– Two live ranges overlapping is shown by placing

an edge between their corresponding nodes
– For k global registers, add a k-clique to the graph

• k-clique: k nodes all connected to each other

• Use graph coloring to map registers to ranges
where each color represents a register
– Try to obtain a k-coloring of this graph

• Legal coloring: assign colors to each node in the graph
such that no adjacent nodes are the same color.

registerAllocation  BGRyder Spring 99 4

Example
1. j :=
2. l := ...j...
3. if() then { j := }
4. else {j := }
5. k := j …
6. j :=
7. := j…k
8. k:=
9. := ...j…l..k...

(j.1)

(l.2)

(j.3/4)

(j.6)

(k.5)

(k.8)

(j.1)

(l.2)

(j.3/4)

(k.5)

(j.6)

(k.8)

Code
Live Ranges

Interference
Graph

registerAllocation  BGRyder Spring 99 5

(j.1)

(l.2)

(j.3/4)

(j.6)

(k.5)

(k.8)

With one node having 5 neighbors,
we may need lots of colors, if
neighbors are interconnected.
Find 3-cliques: (l.2,j.3/4,k.5)
(l.2,k.5,j.6) (l.2,j.6,k.8)
so need at least 3 registers to color
this graph!

(j.1)

(l.2)

(j.3/4)

(j.6)

(k.5)

(k.8)

(l.2,j.3,k.5)

registerAllocation  BGRyder Spring 99 6

Example

A possible 3 coloring.

(j.1)

(l.2)

(j.3/4)

(j.6)

(k.5)

(k.8)

registerAllocation  BGRyder Spring 99 7

Examplea1=
b1=

?

a2=
b2=

b2=
a2=

s = a1+a2
a1=

s = b1+b2

k = a1 * b1 * s

?

live range for a1
live range for b2
live range for a2
live range for b1
live range for s

Interference shown by overlap
of live ranges in shared nodes
and/or edges in graph.

registerAllocation  BGRyder Spring 99 8

Examplea1=
b1=

?

a2=
b2=

b2=
a2=

s = a1+a2
x1=

s = b1+b2

a4 = φ(x1,a1)
k = a4 * b1 * s

?

Variable renaming may let
us eliminate some interferences.
This graph has no interference
between x1 and a1.
SSA-form: each variable use is
reached by only one definition.

registerAllocation  BGRyder Spring 99 9

Examplea1=
b1=

?

a2=
b2=

b2=
a2=

s = a1+a2
x1=

s = b1+b2

a4 = φ(x1,a1)
k = a4 * b1 * s

?

x1 b1

s a1

a4

b2

a2

Interference graph

registerAllocation  BGRyder Spring 99 10

Example
• Interference graph contains

a 4-clique so can’t find a 3
coloring

• Means have to spill
something to find a 3
coloring

• But a 4 coloring is possible
as shown

x1 b1

s a1

a4

b2

a2

Interference graph

r1 r2

 r3

registerAllocation  BGRyder Spring 99 11

Optimistic Register Allocation

• Build interference graph
• Simplify by removal of easy-to-color nodes to

a stack (degree < k)
• Spill some value when reach state where all

nodes left have degree ≥ k (potential spill)

• Select color for each node in stack order
• Restart after removal of spilled node and its

adjacent edges (actual spill)

Chaitin et.al. 1982

registerAllocation  BGRyder Spring 99 12

Optimistic Register Allocation
• Usually 1-2 iterations work in practice
• Heuristics

– Which node to spill? try to estimate which node is
inhibiting the coloring the most

• E.g., minimize estimated spill cost per neighbor of
current node where spill cost = #def points +#use
points weighted by execution frequency

– Which node to color next during algorithm?
• Try to have coloring fail as early as possible. Why?
• Color urgency - #uncolored neighbors/#possible colors

left

registerAllocation  BGRyder Spring 99 13

Example
coloring with k=3.

stack simplify nodes with 1,2 neighbors
x1

a4
s assume can color s; now delete

edges so that b1 (deg 4), a1 (deg 3)

a1 assume can color a1; now delete
edges so that a2,b2 (deg 2), b1(deg3)

b1 assume can color b1; now delete
edges so that a2,b2 (deg 1)

a2

b2
DONE

x1 b1

s a1

a4

b2

a2

3 potential spills in stack

registerAllocation  BGRyder Spring 99 14

Example

Colors: 1, 2, 3

Assignments

b2 1
a2 2

b1 3
a1 can’t color so must be actual

spill

Redraw interference graph and start
over.

x1 b1

s a1

a4

b2

a2

registerAllocation  BGRyder Spring 99 15

Example
Restart

Colors: 1, 2, 3

Assignments
b2 1

a2 2
b1 3

s 1

a4 2
x1 2

SUCCESS

x1 b1

s

a4

b2

a2

registerAllocation  BGRyder Spring 99 16

Improved Register Allocation

• Coalescing - try to combine live ranges when
can avoid register copies Rs ← Rt; check if
can do calculation in Rs.
– Improvement on earlier algorithm
– When coalesce 2 nodes, get a new node with union

of the edges of the 2 previous nodes
– If overdo coalescing, then can create too many

interferences, but how to tell?

Briggs, et. al. (1994),
George+Appel (1996)

registerAllocation  BGRyder Spring 99 17

When to coalesce?

• Need heuristic to guide coalescing decisions
• Briggs: Coalesce nodes a and b if resulting

node will have fewer neighbors of degree ≥ k

• George: Coalesce nodes a and b if for every
neighbor t of a, t already interferes with b or t
is of degree < k.

• Both strategies are safe, but conservative

registerAllocation  BGRyder Spring 99 18

Improved Algorithm

• Build interference graph categorizing nodes
as move-related or not

• Simplify by removal of non-move-related
easy-to-color nodes to a stack (degree < k)

• Coalesce conservatively on simplified graph;
restart simplify

• Freeze some move-related node of low degree
and make it non-move-related; restart
simplify

registerAllocation  BGRyder Spring 99 19

Improved Algorithm, cont

• Spill some value when reach state where all
nodes left have degree ≥ k (potential spill)

• Select color for each node in stack order
• Restart after removal of spilled node and its

adjacent edges (actual spill)

build simplify coalesce freeze potential select actual
 spill spill

registerAllocation  BGRyder Spring 99 20

Improvements
• If must spill, may need to undo coalescing

– Simple: undo all coalesces and rebuild graph
– Complex: undo all coalesces AFTER the first

potential spill was identified

• Precolored nodes - values that must be in
specific registers (e.g., for parameter passing)
– Can color other nodes with those colors, as long

as they don’t interfere
– Can’t simplify or spill such nodes so want to keep

their live ranges short!

registerAllocation  BGRyder Spring 99 21

Improvements

• Can sometimes coalesce spilled values if can
prove their live ranges do not interfere (reuse
storage)
– Get interference graph for spilled nodes
– Coalesce any non-interfering spilled nodes

connected by a move
– Use simplify and select to color the graph with

each color corresponding to shared frame
locations

registerAllocation  BGRyder Spring 99 22

Improvements

• Rematerialization
– Look for never-killed calculations that are

cheaply redone (in 1 instruction) instead of saved
in a register

• E.g., immediate loads of an integer constant,
computing a constant offset from a frame pointer

registerAllocation  BGRyder Spring 99 23

Register Saving and Allocation

• Local variable or compiler temporary should
be allocated to caller-save register to avoid
saves

• Values live across several levels of procedure
call, should be put in callee-save registers
since then only 1 save is necessary
– Can force this by making such nodes interfere

with all precolored caller-save registers

registerAllocation  BGRyder Spring 99 24

Observations

• Empirical data
– Optimistic coloring gains -2%-48% execution

time improvement

• Interference graphs in practice aren’t big
• Compilers should make constants

recognizable by register allocator for
rematerialization

• Order of coalescing seems significant
– Better to do from inner loops to outer

registerAllocation  BGRyder Spring 99 25

Observations

• Limited backtracking in the coloring may be
useful

• Can also split live ranges to decrease the
number of nodes with ≥ k edges, however too
much splitting makes it harder to select spills

• NP-noise explains anomalous behavior in
heuristic solution of NP-complete problem

