
RuntimeSystem  BGRyder Spring 99
1

Runtime System

• First more about symbol tables
– See AbsractSyntax2 lecture

• Procedure activations
• Activation records
• Runtime stack
• Register save disciplines
• Lexical scoping and static links

RuntimeSystem  BGRyder Spring 99
2

Symbol Tables

• In Tiger compiler, symbol tables are not
persistent
– Built, mutated and used during type checking
– Implications

• Not built during parsing

• Types need to be embedded in AST entries or cannot
be used by later compiler phases (e.g., block structure
and its locals) because of destructive updates to Table
objects

RuntimeSystem  BGRyder Spring 99
3

Symbol Tables - Alternatives

• Build one symbol table per scope
• Keep list of currently active symbol tables for

correct lookup

• Keep list of ALL symbol tables and thread
them together by the lexical relationships of
their corresponding scopes

• Can build as parse declarations
• Can save for debugging or profiling usage

RuntimeSystem  BGRyder Spring 99
4

 Job of Runtime System
• Names versus data objects

– Same name can refer to different data objects
during execution; runtime system provides the
mapping

• Procedure activations
– Each time a procedure is called, a new activation

of that procedure occurs within an environment
(who called it? where it was called from? what
declarations are active at call site?)

– Recursion - a new activation of same procedure
can start before an earlier activation has ended

RuntimeSystem  BGRyder Spring 99
5

Activation Lifetime

• Lifetime of an activation of p: sequence
between first and last steps in execution of
procedure body, including time spent
executing any procedures called from p

• Block structured languages allow only nested
procedure lifetimes
– Allows use of stack to define runtime

environment
– Can show relations in procedure activation tree

RuntimeSystem  BGRyder Spring 99
6

Procedure Activation Tree

• Each node is a procedure activation, each
edge represents opening an activation while
the parent activation is still open

• Flow of control in program is depth-first
traversal of activation tree

• A node a is to left of node b in tree, if lifetime
of a occurs before lifetime of b

• Root is main program activation

RuntimeSystem  BGRyder Spring 99
7

Example

main

{ fact(x){…fact(x-1)}

fib(y) { … fib(y-1)+fib(y-2)}
fact(5)

fib(4)

}

main

fact(5)

fact(4)

fact(3)

fact(2)

fact(1)

fib(4)

fib(3)

fib(2) fib(1)

fib(1)

RuntimeSystem  BGRyder Spring 99
8

Procedure Activation Tree

• Depth first traversal of procedure activation
tree represents the sequence of procedure
activations as they occur during execution

• During traversal, stack of procedures on
current path represents currently active
procedures
– Sometimes called the control stack

RuntimeSystem  BGRyder Spring 99
9

Q’s re:Runtime Support

• Is recursion allowed?
• Can a procedure refer to non-local names?
• How are parameters passed?
• Are functions/procedures first class?
• How can storage be dynamically allocated

and deallocated?

RuntimeSystem  BGRyder Spring 99
10

Imperative PL Memory Model

Code
Global static data
Runtime Stack

Heap

fixed size at
compile time

used for dynamically
growing data

contains
activation frames

RuntimeSystem  BGRyder Spring 99
11

Runtime Stack

• Frames on stack for each activation which has
not yet ended (open function/procedure calls)
– Calls and corresponding returns are LIFO
– When called, push the function’s frame onto

stack
– On return from the function, remove its frame

• Dedicated register always points to stack_top

• Exact frame contents depends on architecture
and convention

RuntimeSystem  BGRyder Spring 99
12

Tiger Activation Record

• Stored in fixed order in frame; frame pointer
points to frame beginning; fields at offsets

• Static link to encompassing scope
• Local (non-aggregate) variables
• Return address to branch to in code
• Temporaries (used in function code)
• Saved register contents
• Storage for outgoing arguments

RuntimeSystem  BGRyder Spring 99
13

Runtime Stack (Appel, p 133)

arg n
...
arg2
arg1
static link
local variables
return address
temps
saved registers
arg m
…
arg 1
static link

incoming
arguments

frame pointer

outgoing
arguments

previous frame

current frame

stack pointer

high addresses

low addresses

RuntimeSystem  BGRyder Spring 99
14

Local Non-fixed Size Data

• In a PL with local dynamic storage allocation,
(e.g., non-fixed length parameters A(N))
– Put descriptor for data in fixed size portion of

frame
– Later, allocate storage needed at end of frame in

variable length portion

RuntimeSystem  BGRyder Spring 99
15

Context Switching - Registers

• Register contents are saved before context
switching into another procedure
– Callee-save versus Caller-save disciplines
– Contents always saved in frame of saver
– Set by convention of hardware
– Often choose to keep values in registers for

efficiency

RuntimeSystem  BGRyder Spring 99
16

Parameter Passing

• By value

• By value result (copy in, copy out)
• By result
• By reference

• By name (by thunk)
Most common mechanisms in italics. Choice

affects how to implement context switching.

RuntimeSystem  BGRyder Spring 99
17

Calling Context Switching

• Conventional to pass first few parameters in
specific registers (4-6)

• May need to save registers to put the
argument values into them; Why practical?
– Most procedures are leaves of calling structure
– Interprocedural register allocation allows

parameter passing in different registers
– Needn’t ever save dead variables
– Register windows give fresh set of registers to

each called function

RuntimeSystem  BGRyder Spring 99
18

Calling Context Switching
• When a call occurs:

– Caller evaluates actuals and stores them in
callee’s activation record

– Caller stores code return address and stack_top
value in callee’s activation record

– Caller increments stack_top to point within
callee’s activation record to beginning of local
storage

– Callee saves registers into its activation record
– Callee initializes local data and begins execution

Callee saves

RuntimeSystem  BGRyder Spring 99
19

Calling Context Switching

• On return from a call
– Callee stores its return value in its activation

record
– Callee restores stack_top to its former value and

restores registers
– Caller can copy return value into its own

activation record

Callee saves

RuntimeSystem  BGRyder Spring 99
20

Parameters

• Some conventions are troublesome
– C requires all parameters be in consecutive

storage words
– C allows parameters to have their address taken

(dangling pointer problem)

RuntimeSystem  BGRyder Spring 99
21

Return Address

• Address of code instruction right after the call
statement

• Put in a designated register by the calling
procedure

• Return value of a function is also usually
returned in a register

RuntimeSystem  BGRyder Spring 99
22

Why ever write to memory?

• Variable is passed by reference
• Variable used in nested procedure
• Value too big to fit in a single register
• Variable is an array
• Register holding variable is needed for

another specific purpose
• Too many local+temp variables to fit all in

registers

