Runtime System

e First moreabout symbol tables
— See AbsractSyntax2 lecture

e Procedure activations

e Activation records

e Runtime stack

* Register save disciplines

e Lexical scoping and static links

RuntimeSystem& BGRyder Spring 99

Symbol Tables

 In Tiger compiler, symbol tablesare not
persistent
— Built, mutated and used during type checking
— Implications

e Not built during parsing

* Typesneed to be embedded in AST entriesor cannot
be used by later compiler phases (e.g., block structure
and itslocals) because of destructive updatesto Table
objects

RuntimeSystem& BGRyder Spring 99

Symbol Tables- Alternatives

* Build one symbol table per scope

o Keep list of currently active symbol tablesfor
correct lookup

« Keep list of ALL symbol tablesand thread

them together by the lexical relationships of
their corresponding scopes

e Can build as parse declarations
 Can save for debugging or profiling usage

RuntimeSystem& BGRyder Spring 99

Job of Runtime System

 Namesversusdata objects

— Same name can refer to different data objects
during execution; runtime system provides the

mapping
* Procedure activations
— Each timea procedureiscalled, anew activation
of that procedure occurswithin an environment

(who called 1t? where it was called from? what
declarations are active at call site?)

— Recursion - a new activation of same procedure
can start before an earlier activation has ended

RuntimeSystem& BGRyder Spring 99

Activation Lifetime

o Lifetime of an activation of p: sequence
netween first and last stepsin execution of
or ocedur e body, including time spent
executing any procedures called from p

* Block structured languages allow only nested
procedure lifetimes

— Allows use of stack to define runtime
environment

— Can show relationsin procedure activation tree

RuntimeSystem &

5

Procedure Activation Tree

e Each nodeisa procedure activation, each
edge represents opening an activation while
the parent activation is still open

 Flow of control in program is depth-first
traversal of activation tree

e Anodeaistoleft of nodeb in tree, if lifetime
of a occursbeforelifetimeof b

* Root Ismain program activation

RuntimeSystem& BGRyder Spring 99

Example 72"

/ N\

main fact(5) fib(4)

{ fact(x){...fact(x-1)} 7() / \
fib(y) { ... fib(y-1)+fib(y-2)} fact(4) fib(3) fib(1)
fact(5) / \
fib(4) fact(3) fib(2) fib(1)

}

fact(2)

/

fact(1)

RuntimeSystem& BGRyder Spring 99

Procedure Activation Tree

* Depth first traversal of procedure activation
treerepresentsthe sequence of procedure
activations asthey occur during execution

e Duringtraversal, stack of procedureson
current path represents currently active
procedures
— Sometimes called the control stack

RuntimeSystem& BGRyder Spring 99

Q’sre:Runtime Support

e Isrecursion allowed?

e Can aprocedurerefer to non-local names?
« How are parameters passed?

* Arefunctions/proceduresfirst class?

 How can storage be dynamically allocated
and deallocated?

untimeSystema& BGRyder Spring 99

|mperative PL Memory M odel

contains
activation frames

RuntimeSystem& BGRyder Spring 99

Code

Global staticdata «— | compiletime

<

Runtime Stack

|

Heap

fixed size at

used for dynamically
growing data

10

Runtime Stack

 Frameson stack for each activation which has
not yet ended (open function/procedure calls)
— Callsand corresponding returnsare LIFO

—When called, push the function’s frame onto
stack

— On return from the function, removeitsframe
* Dedicated register always pointsto stack top

e Exact frame contents dependson architecture
and convention

RuntimeSystem& BGRyder Spring 99 1

Tiger Activation Record

Stored in fixed order in frame; frame pointer
pointsto frame beginning; fields at offsets

Static link to encompassing scope

L ocal (non-aggr egate) variables
Return addressto branch to in code
Temporaries (used in function code)
Saved register contents

Storage for outgoing arguments

RuntimeSystem& BGRyder Spring 99

Runtime Stack (Appd, p 133)

Incoming
arguments

argn \ high addreAsses
;rg2 previous frame

argl

static link / frame pointer

local variables

return address

temps

N

saved registers

current frame

outgoing
arguments

RuntimeSystem& BGRyder Spring 99

argm

argl

\ 4
low addr esses

static link

stack pomter

13

| ocal Non-fixed Size Data

 In aPL with local dynamic storage allocation,
(e.g., non-fixed length parameters A(N))

— Put descriptor for data in fixed size portion of
frame

— Later, allocate storage needed at end of framein
variable length portion

RuntimeSystem& BGRyder Spring 99 14

Context Switching - Registers

* Register contents are saved befor e context
switching into another procedure
— Callee-save versus Caller-save disciplines
— Contents always saved in frame of saver
— Set by convention of hardware

— Often chooseto keep valuesin registersfor
efficiency

RuntimeSystem& BGRyder Spring 99

15

Parameter Passing

 Byvalue

* By valueresult (copy In, copy out)
By result

 Byreference

By name (by thunk)

M ost common mechanismsin italics. Choice
affects how to implement context switching.

RuntimeSystem& BGRyder Spring 99

Calling Context Switching

e Conventional to passfirst few parametersin
specificregisters (4-6)
« May need to saveregistersto put the

argument valuesinto them; Why practical?

— Most procedures are leaves of calling structure

— Interprocedural register allocation allows
parameter passing in different registers
— Needn't ever save dead variables

— Register windows give fresh set of registersto
each called function

RuntimeSystem& BGRyder Spring 99

Calling Context Switching

 When acall occurs: Callee saves

— Caller evaluates actuals and storesthem In
callee’ s activation record

— Caller storescodereturn address and stack_top
valuein callee sactivation record

— Caller incrementsstack topto point within
callee' sactivation record to beginning of local
storage

— Callee savesregistersinto its activation record
— Calleeinitializeslocal data and begins execution

RuntimeSystem& BGRyder Spring 99

18

Calling Context Switching

Callee saves

e Onreturn from a call

— Calleestoresitsreturn valuein its activation
record

— Calleerestoresstack topto itsformer value and
restoresregisters

— Caller can copy return valueinto itsown
activation record

RuntimeSystem& BGRyder Spring 99 19

Parameters

e Some conventions ar e troublesome

— C requiresall parametersbein consecutive
storage wor ds

— C allows parametersto havetheir addresstaken
(dangling pointer problem)

RuntimeSystem& BGRyder Spring 99

20

Return Address

 Addressof codeinstruction right after the call
statement

e Put in adesignated register by the calling
0rocedure

 Return value of afunction isalso usually
returned in aregister

RuntimeSystem& BGRyder Spring 99 21

Why ever writeto memory?

 Variableispassed by reference

e Variableused in nested procedure
 Valuetoo bigtofitin asingleregister
 Variableisan array

* Register holding variableis needed for
another specific purpose

 Too many local+temp variablesto fit all In
registers

RuntimeSystem& BGRyder Spring 99

