0O Design

- UML Class diagram notation (LAR,Ch 16)

+ OO Design Principles
- Responsibility-driven design
+ Useful patterns of design

- General Responsibility Assignment Software
Patterns (6GRASP)

- Expert, Creator, Low Coupling, Controller, High

Cohesion

0O Design-9, €5431 F06, BG Ryder/A

Rountev

Example (4R, Fig 16.1 p 250)

SuperclassFoo
or

SuperClassFoo { abstract }

officially in UML, the top format is
used to distinguish the package
name from the class name

unofficially, the second alternative

- classO Int

3 common

+ publicAttribute : String
- privateAttribute

1. classifier name
2. attributes

3. operations

ishnitializedAttribute : Bool = true
aCollection : VeggieBurger [*]
attributeMayLegallyBeNull : String [0..1]

finalConstantAttribute : Int = 5 { readOnly }

IderivedAttribute

+ classOrStaticMethodi
+ publicMethod()

an interface
shown with a
keyword

- privateMethod()
protectedMethod()

~ packageVisibleMethod()
«constructor» SuperclassFoo(Long)

methodWithParms(parm? : String, parm2 : Float)

«interface»
Runnable

methodThrowsException() {exception IOException}

abstractMethod()

run()

) { abstract) // alternate

finalMethod() { leaf } // no override in subclass

) { uarded }

interface
implementation
an

subclasging

Use depe
static-method ¢

>~

ounralabal

TUw HIUUUII Iu

name : String
style :Int=0
tFont(nams tring) : Font
getName() : String
[spmcens By =
~
=

aramefter

is common

© java.awt:Font
o

r
java.awt.Font

‘plain : Int = 0 readOnly }
bold : Int = 1 { readOnly }

b (o104

R

| and/or

afl dependence be

- ellipsis *...” means there may be elements, but not shown
- a blank compartment officially means “unknown” but as a
convention will be used to mean “no members”

0O Design-9, €S431 F06, BG Ryder/A Rountev

R
Neen ob |ecTs
"
multiplicities

UML Associations w4r, Fig 16.4, p 253)

visibility:type multiplicity=default{property-string}

Domain Model - Sale
Register 1 Captures 1.
conceptual prge oto : Bool
perspective I/fotglmp ete - boolean
Register Sale
Design Model 1 | time
isComplete : Boolean
DCD; software endSale() currentSale | /total
perspective enterltem(...)
makePayment(...) makeLineltem(...)
0O Design-9, €S431 F06, BG Ryder/A Rountev 3

UML Attributes with Properties

visibility:type multiplicity=default{property-string}

Sale SalesLineltem

time: DateTime
lineltems : SalesLineltem [1..*]
or
lineltems : SalesLineltem [1..*] {ordered}

Two ways to show a
collection attribute

Sale SalesLineltem
*
time: DateTime 1"/
lineltems
{ordered, List} | ...
o

notice that an association end can optionally also
have a property string such as {ordered, List}

0O Design-9, €S431 F06, BG Ryder/A Rountev 4

Goal of Object-Oriented Design

* Produce a design model

- Two major categories of artifacts
- Interaction diagrams

- Sequence diagrams

- Communication diagrams

- Design classes and the corresponding
class diagrams

- Often based on conceptual classes from
the domain model

0O Design-9, €S431 F06, BG Ryder/A Rountev

Basics of OO Design

- Core idea: identify responsibilities and
assign them to classes and objects
- Responsibilities for doing
- Create an object, perform calculations,
invoke operations on other objects, ..
- Responsibilities for knowing
- Private encapsulated data, related
objects, things that can be derived or
calculated, ..
* Methods fulfill responsibilities

0O Design-9, €S431 F06, BG Ryder/A Rountev

Responsibilities

- Doing: “a Sale object is responsible for

creating its SalesLineItem objects”
- Knowing: “a Sale object is responsible
for knowing its total’

- Often inferable from the domain model
Implemented by operations: act alone
or in collaboration with other objects

- Sale: operation getTotal, which
collaborates with all SalesLineItem objects

0O Design-9, €S431 F06, BG Ryder/A Rountev

Responsibilities & Interaction Diagrams

- Assignment of responsibilities occurs
during the creation of interaction
diagrams
- Decisions are encoded in the diagrams

:Sale |

makePayment(amount) ’E] create(amount)

:Payment

Sale has the responsibility to handle message makePayment;
to fulfill this responsibility, Sale is responsible for creating a
new object Payment and for collaborating with it

0O Design-9, €S431 F06, BG Ryder/A Rountev

A Sample Design Pattern

A pattern is a named, well-known problem/solution
pair that can be applied in new contexts (LAR, p.279)

Name: Information Expert

Solution: Assign a responsibility to the class
that has the information needed to fulfill
that responsibility

Problem it solves: How do we assign
responsibilities to classes and objects?

Example: ..
Discussion: when to use it, how to use it, ..
Contraindications: when not to use it, ..

0O Design-9, €S431 F06, BG Ryder/A Rountev

Some Basic Patterns

* Focus now on five basic patterns for
assigning responsibilities
Information Expert

Creator

High Cohesion

- Low Coupling

Controller

0O Design-9, €S431 F06, BG Ryder/A Rountev

Pattern 1: Information Expert

* Assign a responsibility to the class that
has the information necessary to fulfill
the responsibility

- Example in POS system: Who should be
responsible for knowing the total of a
sale?

* Look for candidates among the existing
design classes in the design model

- If nothing applicable, look at the domain
model

0O Design-9, €S431 F06, BG Ryder/A Rountev

Domain Model

- Suppose we haven't created any design
classes yet; look at the domain model

Sale
date Product
time Specification
1 description
Contains pr-ice
1 * itemID
SalesLineItem - 1

quantity Described-by

0O Design-9, €S431 F06, BG Ryder/A Rountev

Design Class Sale
- In the domain model, Sale looks like an
expert: it knows about all lineItems,
and can compute the sum of their
subtotals

* So we create a design class Sale in the
design class diagram

Sale Expresses the fact that we
date gave Sale the responsibility

time to know its total
getTotal()

0O Design-9, €S431 F06, BG Ryder/A Rountev

Interaction Diagram

- Now need to create an interaction
diagram for the responsibility

—>
t:=getTotal()

:Sale

* Need subtotal for each item (i.e.
quantity * price)

* Who is responsible for knowing the
subtotal for a line item?

- SalesLineItem is the expert, so we
create a corresponding design class

0O Design-9, €S431 F06, BG Ryder/A Rountev

SalesLineItem in the Design Model

Sale Sales

date LineItem

time quantity
getTotal() getSubtotal()

—>
t:=getTotal()

—>
1*: st:=getSubtotal()

:Sale

*

0O Design-9, €S431 F06, BG Ryder/A Rountev

:SalesLineItem

i

ProductSpec in the Design Model
 Who is responsible for knowing item price?

—>

—>
1*:st:=getSubtotal()

t:=getTotal()

:Sale

Sale Sales Product
date LineItem Specification
Time quantity description
getTotal() getSubtotal() price
itemID
getPrice()

:SalesLineItem

*

:ProductSpecification

4_
1.1: p:=getPrice()

0O Design-9, €S431 F06, BG Ryder/A Rountev

Assigned Responsibilities

- To know a Sale's total, three
responsibilities were assigned
- Sale: knows sale total
- SalesLineItem: knows subtotal for line item
- ProductSpecification: knows product price

* Interaction diagram: shows the dynamic
behavior

- Design classes were created as
necessary

- Class diagram shows the static structure of the
software

00 Design-9, 5431 F06, BG Ryder/A Rountev 7

Wasn't That Solution Obvious?

- Consider an alternative (Class X is
responsible)

- Some object X asks the Sale for all of its
SalesLineItem objects

- X asks each line item for the quantity and the
ProductSpecification

- X asks each specification for the price
- X computes sum(quantity*price)

- X has several responsibilities related to data
that lives in other objects

* Not uncommon for OO novices to do this

00 Design-9, 5431 F06, BG Ryder/A Rountev 18

Summary

- Information Expert: objects do things
related to the information they have,
often requiring collaboration among
objects

* Information hiding: objects use their
own info to fulfill tasks

- Low coupling, more robust and maintainable
system, better opportunities for reuse

0O Design-9, €S431 F06, BG Ryder/A Rountev

Summary, cont.

- Contraindications: may create problems
with coupling and cohesion

- E.g., should a Sale be responsible for
saving itself to a database?

* Increased coupling: then the code in Sale
depends on DB services (SQL, JDBC, etc)

* Duplicated code: similar DB logic will be
duplicated in many persistent classes (bad for
maintenance)

00 Design-9, 5431 F06, BG Ryder/A Rountev 20

10

Pattern 2: Creator

* Assign class B the responsibility of
creating an instance of class A if:
- B aggregates A objects
* Whole-Part; Assembly-Part (e.g. Body-Leg)
- B contains A objects
- B records A objects
- B closely uses A objects

- B has initializing data that will be passed
to a new A object
* B is an expert w.r.t. creating A objects

00 Design-9, CS431 FO6, BG Ryder/A Rountev 2

Example

* Who should be responsible for creating
a SalesLineItem?
- Sale aggregates SalesLineItem objects

:Register :Sale
| makeLineItem(quantity)

cr'ecrre(qucm'ti'ry)> :Sales
LineItem

L
1

'
00 Design-9, CS431 FO6, BG Ryder/A Rountev 22

11

Summary

* The creating object will have to be
connected with the new object anyway,
so we just add some extra work there

- If some other object were to do it, increases
coupling, at cost of reduced maintainability/reuse

» E.g.: the enclosing container or
recorder is a natural candidate for a
creator

- Contraindications: complex creation

- e.g. using recycled objects for performance
- better to use the Factory pattern (more later)

00 Design-9, CS431 FO6, BG Ryder/A Rountev 23

Pattern 3: Low Coupling

- Assign responsibilities so that coupling
remains low
- Goal: few dependences, low change impact,

increased possibilities for reuse

* Coupling: measure of how strongly one
class is connected to, has knowledge of,
or relies on other classes
- Changes in related classes force local changes
- Harder to understand classes in isolation

- Harder to reuse because a class requires the
presence of other classes it depends on

00 Design-9, CS431 FO6, BG Ryder/A Rountev 24

12

Example

* Classes Payment, Register, Sale

* Need to create a Payment instance and
associate it with the Sale
- Which class creates Payment instances?

- Register has the info necessary to
create a payment, so we can use

Creator
makePayment(x)[;Reaister] —> 1:create(x) [-:p
:Register p:Payment

—>» 2: addPayment(p)[. Sale

00 Design-9, CS431 FO6, BG Ryder/A Rountev 5

Example, cont.

* But this couples class Register to
knowledge of the Payment class

- Alternative

—> —>
makePayment(x) 1:makePayment(x Sale

:Register

1.1: create(x)| y

:Payment

* Basic idea: Sale will need to know about
Payment, so this coupling is already there,
but Register does not need to know

00 Design-9, CS431 FO6, BG Ryder/A Rountev 26

13

Examples of Coupling

* Class A has an attribute (field) of
class B

- An instance of A calls an instance of B

- A has a method that references
instances of B

- local variable/parameter/return value is a
reference (i.e., pointer) to a B object

- A is a direct or indirect subclass of B

00 Design-9, CS431 FO6, BG Ryder/A Rountev 27

Summary

* Low coupling: general principle for design
- Should be considered together with other
patterns, and some trade-offs may be

needed
* Classes that are inherently generic in
nature and have high probability of
reuse should have especially low coupling

- Some degree of coupling is necessary,
the goal is to avoid unnecessary coupling

00 Design-9, CS431 FO6, BG Ryder/A Rountev 28

14

Pattern 4: High Cohesion

- Cohesion: how strongly related and
focused are the responsibilities of a
class

- A low-cohesion class does unrelated
things, or just does too many things

* Problem: responsibilities should have
been delegated to other classes

00 Design-9, 5431 F06, BG Ryder/A Rountev 29

Example

- Who creates Payment objects?

—>
makePayment() —» l:create()

p: Pa¥mem‘

:Register
—>» 2: addPayment(p)

:Sale

* If Register does the work for all
system events, it will become bloated
and not cohesive

00 Design-9, 5431 F06, BG Ryder/A Rountev 30

15

Example

* Our better solution: delegate Payment
creation to Sale
- Higher cohesion for Register

- Also reduces coupling
makePayment()

1:makePayment() :Sale

:Register

1.1: create() |y

Rule of thumb: class with high cohesion :Payment

has relatively small number of methods with
highly related functionality, and does not
do too much work (LAR, p 317)

0O Design-9, €S431 F06, BG Ryder/A Rountev

31

Degrees of Cohesion

- Very low: a class is solely responsible
for many tasks in different areas
- E.g. RDB-RPC-Interface for interacting
with relational databases (RDB) and
handling of remote procedure calls (RPC)
- Low: sole responsibility for a complex
task in one area

- E.g. RDBInterface for interacting with
relational databases: still oo much code

0O Design-9, €S431 F06, BG Ryder/A Rountev

32

16

Degrees of Cohesion

* Moderate: lightweight and sole
responsibilities in a few different areas

- Areas logically related to the class but not

to each other

+ Company class that is responsible for employee and
financial info

- High: moderate responsibilities in one
area
- Collaborates with other classes
- E.g., RDBInterface, but partially responsible

- Collaborates with a dozen other classes related to RDB
access

00 Design-9, 5431 F06, BG Ryder/A Rountev 33

Benefits

- Clarity and ease of comprehension

* Maintenance and enhancements are
simplified

+ Often results in low coupling

- Cohesive classes are easier to reuse

- Contraindications:

- Distributed server objects need to be larger,
w/ coarse-grain operations

+ Reduces the number of remote calls

- To simplify maintenance by an expert
developer

00 Design-9, 5431 F06, BG Ryder/A Rountev 34

17

System Events

« Who should be responsible for handling an
input system event?
- An event generated by an external actor
- E.g., word processor: “spell check” button
triggers event “perform spell check”
- System sequence diagrams from analysis:
conceptual class System handles events

* In design: handling by instances of
controller classes

00 Design-9, CS431 FO6, BG Ryder/A Rountev 35

Pattern 5: Controller

- Facade controller: a class representing
the entire system or device

 Use case controller: a class
representing a use case within which
the event occurs
- e.g. XyzHandler, XyzCoordinator,
XyzSession
+ Xyz=name of the use case

- Handles all system events in the use case

00 Design-9, CS431 FO6, BG Ryder/A Rountev 36

18

Example

- System events in POS system
- endSale(), enterItem(), makeNewSale(),

makePayment(), ..
* Typically generated by the GUI
:SaleWindow User Interface Layer

¢ enterItem(itemID,qty)

1?29? Domain Layer

00 Design-9, 5431 F06, BG Ryder/A Rountev 37

Controller Classes

- Entry points into the domain layer
- Isolate the internals of the domain layer

- Facade controller: entire system/device
- POS_System, Register

* Use case controller: handler for all
events in a use case
- ProcessSaleHandler, ProcessSaleSession

- Can track the state of interactions
(e.g., order of events)

00 Design-9, 5431 F06, BG Ryder/A Rountev 38

19

Using Controller Classes

- Facade controller: used when there are
not “too many” system events

- Avoid "bloated” controllers (e.g., too many
responsibilities, has too much data)

- Use-case controllers
- 6Good when there are many system events
- Several manageable controller classes

- Tracking of the state of the current use-
case scenario: e.g. to enforce sequencing
constraints

00 Design-9, CS431 FO6, BG Ryder/A Rountev 39

Interface Layer

- Interface objects (windows, etc.)
should not handle system events
- The domain layer has the application logic
- 6ood for reuse of application logic and UT

/ avoid

—> 1: makelineItem()

:SaleWindow

¢ 1:enterItem()

:Register | —— . :Sale
1.1: makeLineItem()

0O Design-9, €S431 F06, BG Ryder/A Rountev

40

20

Client/Server Applications

- GUI + controllers on the client side

- GUI sends requests to the controller
* In the same OS process
- Controller forwards the request to a
remote server
- Systems with Web interface

- Server-side use-case controllers

* e.g., for Enterprise Java Beans: often there is
a session bean per use case

0O Design-9, €S431 F06, BG Ryder/A Rountev

41

21

