
1

OO Design-9, CS431 F06, BG Ryder/A Rountev 1

OO Design

• UML Class diagram notation (LAR,Ch 16)
• OO Design Principles

– Responsibility-driven design
• Useful patterns of design

– General Responsibility Assignment Software
Patterns (GRASP)

– Expert, Creator, Low Coupling, Controller, High
Cohesion

OO Design-9, CS431 F06, BG Ryder/A Rountev 2

Example (LAR, Fig 16.1 p 250)

java.awt::Font
or

java.awt.Font

plain : Int = 0 { readOnly }
bold : Int = 1 { readOnly }
name : String
style : Int = 0
...

getFont(name : String) : Font
getName() : String
...

«interface»
Runnable

run()

- ellipsis “…” means there may be elements, but not shown
- a blank compartment officially means “unknown” but as a
convention will be used to mean “no members”

SubclassFoo

...

run()
...

SuperclassFoo
or

SuperClassFoo { abstract }

- classOrStaticAttribute : Int
+ publicAttribute : String
- privateAttribute
assumedPrivateAttribute
isInitializedAttribute : Bool = true
aCollection : VeggieBurger [*]
attributeMayLegallyBeNull : String [0..1]
finalConstantAttribute : Int = 5 { readOnly }
/derivedAttribute

+ classOrStaticMethod()
+ publicMethod()
assumedPublicMethod()
- privateMethod()
protectedMethod()
~ packageVisibleMethod()
«constructor» SuperclassFoo(Long)
methodWithParms(parm1 : String, parm2 : Float)
methodReturnsSomething() : VeggieBurger
methodThrowsException() {exception IOException}
abstractMethod()
abstractMethod2() { abstract } // alternate
finalMethod() { leaf } // no override in subclass
synchronizedMethod() { guarded }

3 common
compartments

1. classifier name

2. attributes

3. operations

interface
implementation
and
subclassing

Fruit

...

...

PurchaseOrder

...

...

1

association with
multiplicities

dependency

officially in UML, the top format is
used to distinguish the package
name from the class name

unofficially, the second alternative
is common

order

an interface
shown with a
keyword

Use dependency to show global, parameter, local and/or
static-method call dependence between objects

2

OO Design-9, CS431 F06, BG Ryder/A Rountev 3

UML Associations (LAR, Fig 16.4, p 253)

visibility:type multiplicity=default{property-string}

Register

...

endSale()
enterItem(...)
makePayment(...)

Sale

time
isComplete : Boolean
/total

makeLineItem(...)

Register

...

Sale

time
isComplete : Boolean
/total

Captures

1

11

Domain Model

conceptual
perspective

Design Model

DCD; software
perspective

currentSale

OO Design-9, CS431 F06, BG Ryder/A Rountev 4

UML Attributes with Properties

notice that an association end can optionally also
have a property string such as {ordered, List}

Sale

time: DateTime

...

SalesLineItem

...

...

1..*

lineItems
{ordered, List}

Sale

time: DateTime
lineItems : SalesLineItem [1..*]
 or
lineItems : SalesLineItem [1..*] {ordered}

...

SalesLineItem

...

...

Two ways to show a
collection attribute

visibility:type multiplicity=default{property-string}

3

OO Design-9, CS431 F06, BG Ryder/A Rountev 5

Goal of Object-Oriented Design

• Produce a design model
– Two major categories of artifacts

• Interaction diagrams
– Sequence diagrams
– Communication diagrams

• Design classes and the corresponding
class diagrams
– Often based on conceptual classes from
the domain model

OO Design-9, CS431 F06, BG Ryder/A Rountev 6

Basics of OO Design

• Core idea: identify responsibilities and
assign them to classes and objects

• Responsibilities for doing
– Create an object, perform calculations,
invoke operations on other objects, …

• Responsibilities for knowing
– Private encapsulated data, related
objects, things that can be derived or
calculated, …

• Methods fulfill responsibilities

4

OO Design-9, CS431 F06, BG Ryder/A Rountev 7

Responsibilities
• Doing: “a Sale object is responsible for
creating its SalesLineItem objects”

• Knowing: “a Sale object is responsible
for knowing its total”
– Often inferable from the domain model

• Implemented by operations: act alone
or in collaboration with other objects
– Sale: operation getTotal, which
collaborates with all SalesLineItem objects

OO Design-9, CS431 F06, BG Ryder/A Rountev 8

Responsibilities & Interaction Diagrams
• Assignment of responsibilities occurs
during the creation of interaction
diagrams
– Decisions are encoded in the diagrams

makePayment(amount)
 :Sale

 :Payment create(amount)

Sale has the responsibility to handle message makePayment;
to fulfill this responsibility, Sale is responsible for creating a
new object Payment and for collaborating with it

5

OO Design-9, CS431 F06, BG Ryder/A Rountev 9

A Sample Design Pattern

Name: Information Expert
Solution: Assign a responsibility to the class

that has the information needed to fulfill
that responsibility

Problem it solves: How do we assign
responsibilities to classes and objects?

Example: …
Discussion: when to use it, how to use it, …
Contraindications: when not to use it, …

A pattern is a named, well-known problem/solution
pair that can be applied in new contexts (LAR, p.279)

OO Design-9, CS431 F06, BG Ryder/A Rountev 10

Some Basic Patterns

• Focus now on five basic patterns for
assigning responsibilities

• Information Expert
• Creator
• High Cohesion
• Low Coupling
• Controller

6

OO Design-9, CS431 F06, BG Ryder/A Rountev 11

Pattern 1: Information Expert
• Assign a responsibility to the class that
has the information necessary to fulfill
the responsibility

• Example in POS system: Who should be
responsible for knowing the total of a
sale?

• Look for candidates among the existing
design classes in the design model
– If nothing applicable, look at the domain
model

OO Design-9, CS431 F06, BG Ryder/A Rountev 12

Domain Model
• Suppose we haven’t created any design
classes yet; look at the domain model

Sale
date
time

SalesLineItem
quantity

Product
Specification
description

price
itemID

Contains
1

1..*

Described-by
1*

7

OO Design-9, CS431 F06, BG Ryder/A Rountev 13

Design Class Sale
• In the domain model, Sale looks like an
expert: it knows about all lineItems,
and can compute the sum of their
subtotals

• So we create a design class Sale in the
design class diagram

Sale
date
time

getTotal()

Expresses the fact that we
gave Sale the responsibility
to know its total

OO Design-9, CS431 F06, BG Ryder/A Rountev 14

Interaction Diagram
• Now need to create an interaction
diagram for the responsibility

• Need subtotal for each item (i.e.
quantity * price)

• Who is responsible for knowing the
subtotal for a line item?

• SalesLineItem is the expert, so we
create a corresponding design class

 :Sale t:=getTotal()

8

OO Design-9, CS431 F06, BG Ryder/A Rountev 15

SalesLineItem in the Design Model

Sales
LineItem
quantity

getSubtotal()

Sale
date
time

getTotal()

 :Sale t:=getTotal()
 :SalesLineItem

1*: st:=getSubtotal()

*

OO Design-9, CS431 F06, BG Ryder/A Rountev 16

ProductSpec in the Design Model
• Who is responsible for knowing item price?

Product
Specification
description

price
itemID

getPrice()

Sales
LineItem
quantity

getSubtotal()

Sale
date
time

getTotal()

 :Sale t:=getTotal()
 :SalesLineItem

1*:st:=getSubtotal()

*

 :ProductSpecification 1.1: p:=getPrice()

9

OO Design-9, CS431 F06, BG Ryder/A Rountev 17

Assigned Responsibilities
• To know a Sale’s total, three
responsibilities were assigned
– Sale: knows sale total
– SalesLineItem: knows subtotal for line item
– ProductSpecification: knows product price

• Interaction diagram: shows the dynamic
behavior

• Design classes were created as
necessary
– Class diagram shows the static structure of the

software

OO Design-9, CS431 F06, BG Ryder/A Rountev 18

Wasn’t That Solution Obvious?
• Consider an alternative (Class X is

responsible)
– Some object X asks the Sale for all of its

SalesLineItem objects
– X asks each line item for the quantity and the

ProductSpecification
– X asks each specification for the price
– X computes sum(quantity*price)

• X has several responsibilities related to data
that lives in other objects

• Not uncommon for OO novices to do this

10

OO Design-9, CS431 F06, BG Ryder/A Rountev 19

Summary

• Information Expert: objects do things
related to the information they have,
often requiring collaboration among
objects

• Information hiding: objects use their
own info to fulfill tasks
– Low coupling, more robust and maintainable
system, better opportunities for reuse

OO Design-9, CS431 F06, BG Ryder/A Rountev 20

Summary, cont.
• Contraindications: may create problems
with coupling and cohesion
– E.g., should a Sale be responsible for
saving itself to a database?
• Increased coupling: then the code in Sale
depends on DB services (SQL, JDBC, etc)

• Duplicated code: similar DB logic will be
duplicated in many persistent classes (bad for
maintenance)

11

OO Design-9, CS431 F06, BG Ryder/A Rountev 21

Pattern 2: Creator
• Assign class B the responsibility of
creating an instance of class A if:
– B aggregates A objects

• Whole-Part; Assembly-Part (e.g. Body-Leg)
– B contains A objects
– B records A objects
– B closely uses A objects
– B has initializing data that will be passed
to a new A object
• B is an expert w.r.t. creating A objects

OO Design-9, CS431 F06, BG Ryder/A Rountev 22

Example
• Who should be responsible for creating
a SalesLineItem?
– Sale aggregates SalesLineItem objects

 :Register

makeLineItem(quantity)

 :Sale

:Sales
LineItem

create(quantity)

12

OO Design-9, CS431 F06, BG Ryder/A Rountev 23

Summary
• The creating object will have to be
connected with the new object anyway,
so we just add some extra work there
– If some other object were to do it, increases

coupling, at cost of reduced maintainability/reuse
• E.g.: the enclosing container or
recorder is a natural candidate for a
creator

• Contraindications: complex creation
– e.g. using recycled objects for performance

• better to use the Factory pattern (more later)

OO Design-9, CS431 F06, BG Ryder/A Rountev 24

Pattern 3: Low Coupling
• Assign responsibilities so that coupling
remains low
– Goal: few dependences, low change impact,

increased possibilities for reuse

• Coupling: measure of how strongly one
class is connected to, has knowledge of,
or relies on other classes
– Changes in related classes force local changes
– Harder to understand classes in isolation
– Harder to reuse because a class requires the

presence of other classes it depends on

13

OO Design-9, CS431 F06, BG Ryder/A Rountev 25

Example
• Classes Payment, Register, Sale
• Need to create a Payment instance and
associate it with the Sale
– Which class creates Payment instances?

• Register has the info necessary to
create a payment, so we can use
Creator

 :Register makePayment(x)

 :Sale

1:create(x)

2: addPayment(p)

p:Payment

OO Design-9, CS431 F06, BG Ryder/A Rountev 26

Example, cont.
• But this couples class Register to
knowledge of the Payment class

• Alternative

• Basic idea: Sale will need to know about
Payment, so this coupling is already there,
but Register does not need to know

 :Register makePayment(x)

:Payment

1:makePayment(x)

1.1: create(x)

:Sale

14

OO Design-9, CS431 F06, BG Ryder/A Rountev 27

Examples of Coupling

• Class A has an attribute (field) of
class B

• An instance of A calls an instance of B
• A has a method that references
instances of B
– local variable/parameter/return value is a
reference (i.e., pointer) to a B object

• A is a direct or indirect subclass of B

OO Design-9, CS431 F06, BG Ryder/A Rountev 28

Summary
• Low coupling: general principle for design

– Should be considered together with other
patterns, and some trade-offs may be
needed

• Classes that are inherently generic in
nature and have high probability of
reuse should have especially low coupling

• Some degree of coupling is necessary,
the goal is to avoid unnecessary coupling

15

OO Design-9, CS431 F06, BG Ryder/A Rountev 29

Pattern 4: High Cohesion

• Cohesion: how strongly related and
focused are the responsibilities of a
class

• A low-cohesion class does unrelated
things, or just does too many things

• Problem: responsibilities should have
been delegated to other classes

OO Design-9, CS431 F06, BG Ryder/A Rountev 30

Example

• Who creates Payment objects?

• If Register does the work for all
system events, it will become bloated
and not cohesive

 :Register makePayment()

 :Sale

1:create()

2: addPayment(p)

p:Payment

16

OO Design-9, CS431 F06, BG Ryder/A Rountev 31

Example

• Our better solution: delegate Payment
creation to Sale
– Higher cohesion for Register
– Also reduces coupling

 :Register makePayment()

:Payment

1:makePayment()

1.1: create()

:Sale

Rule of thumb: class with high cohesion
has relatively small number of methods with
highly related functionality, and does not
do too much work (LAR, p 317)

OO Design-9, CS431 F06, BG Ryder/A Rountev 32

Degrees of Cohesion
• Very low: a class is solely responsible
for many tasks in different areas
– E.g. RDB-RPC-Interface for interacting
with relational databases (RDB) and
handling of remote procedure calls (RPC)

• Low: sole responsibility for a complex
task in one area
– E.g. RDBInterface for interacting with
relational databases: still too much code

17

OO Design-9, CS431 F06, BG Ryder/A Rountev 33

Degrees of Cohesion
• Moderate: lightweight and sole
responsibilities in a few different areas
– Areas logically related to the class but not
to each other

• Company class that is responsible for employee and
financial info

• High: moderate responsibilities in one
area
– Collaborates with other classes
– E.g., RDBInterface, but partially responsible

• Collaborates with a dozen other classes related to RDB
access

OO Design-9, CS431 F06, BG Ryder/A Rountev 34

Benefits
• Clarity and ease of comprehension
• Maintenance and enhancements are

simplified
• Often results in low coupling
• Cohesive classes are easier to reuse
• Contraindications:

– Distributed server objects need to be larger,
w/ coarse-grain operations
• Reduces the number of remote calls

– To simplify maintenance by an expert
developer

18

OO Design-9, CS431 F06, BG Ryder/A Rountev 35

System Events

• Who should be responsible for handling an
input system event?
– An event generated by an external actor
– E.g., word processor: “spell check” button

triggers event “perform spell check”
• System sequence diagrams from analysis:

conceptual class System handles events
• In design: handling by instances of

controller classes

OO Design-9, CS431 F06, BG Ryder/A Rountev 36

Pattern 5: Controller

• Facade controller: a class representing
the entire system or device

• Use case controller: a class
representing a use case within which
the event occurs
– e.g. XyzHandler, XyzCoordinator,
XyzSession
• Xyz=name of the use case

– Handles all system events in the use case

19

OO Design-9, CS431 F06, BG Ryder/A Rountev 37

Example

• System events in POS system
– endSale(), enterItem(), makeNewSale(),
makePayment(), …

• Typically generated by the GUI
:SaleWindow

:???

enterItem(itemID,qty)

User Interface Layer

Domain Layer

OO Design-9, CS431 F06, BG Ryder/A Rountev 38

Controller Classes

• Entry points into the domain layer
– Isolate the internals of the domain layer

• Facade controller: entire system/device
– POS_System, Register

• Use case controller: handler for all
events in a use case
– ProcessSaleHandler, ProcessSaleSession

• Can track the state of interactions
(e.g., order of events)

20

OO Design-9, CS431 F06, BG Ryder/A Rountev 39

Using Controller Classes

• Facade controller: used when there are
not “too many” system events
– Avoid “bloated” controllers (e.g., too many
responsibilities, has too much data)

• Use-case controllers
– Good when there are many system events
– Several manageable controller classes
– Tracking of the state of the current use-
case scenario: e.g. to enforce sequencing
constraints

OO Design-9, CS431 F06, BG Ryder/A Rountev 40

Interface Layer
• Interface objects (windows, etc.)
should not handle system events
– The domain layer has the application logic
– Good for reuse of application logic and UI

:SaleWindow

:Register

1:enterItem()

:Sale1.1: makeLineItem()

1: makeLineItem()
avoidavoid

21

OO Design-9, CS431 F06, BG Ryder/A Rountev 41

Client/Server Applications

• GUI + controllers on the client side
– GUI sends requests to the controller

• In the same OS process
– Controller forwards the request to a
remote server

• Systems with Web interface
– Server-side use-case controllers

• e.g., for Enterprise Java Beans: often there is
a session bean per use case

