OO Design2

+ POS example - revisited
* LAR Ch 18 has entire POS design explained
+ READ THIS CHAPTER and ASK Q's in class
* Design class diagrams

- Kinds of visibility of objects to one
another

- Navigability of associations

* How to do implementation from design
artifacts?

00 Design2-9, €S431 F06, BG Ryder/A Rountev

Design Artifacts

- Design Class Diagrams (DCDs)

- Differences from Conceptual Class Diagrams in
Domain model

- Contain types, directed associations with
multiplicities, numbered actions

- How visibility between objects is provided
- Interaction Diagrams

- Sequence Diagrams
- Vertical sequence format

- Communication Diagrams
- Network format

0O Design2-9, €S431 F06, BG Ryder/A Rountev

Communication Diagram For POS

—»>

enterItem(id,qty)

:Register

_>
2:makelLineItem(p,

1: :=ge‘l'S;;c(id) Fagade Controller

:Product

1.1:p:=Find(id)

Creator (of Sale)

)

:Sale

Creato

(of SLI

Catalog

I
:Product
Specification

|

4_
2.2:add(s)

:SalesLineItem L
00 Designz-9, B yder: ountev

2.1:create(p,qty)

s:SalesLineItem

3
Design Class Diagram for POS
(LAR, Fig 18.17)
Store
address : Address catalog 1
name : Text ProductDescription
ProductCatalog descriptions
addCompleteSale...) P description : Text
{Map} :
> price : Money
1 1..*| itemID: ItemiD
catalog getProductDesc(...)
_ = SR
— ~——————_~7 description | 1
register |, 1 / Sale 7
Register / isComplete : Boolean ~~ -
time : DateTime lineltems SalesLineltem
currentSale {ordered} ity : Int
> quantity : Integer
en;ﬁSﬁle() 1 En?lfenﬂ;iﬂ;nnﬁlf.tj() . {Subtotal
ﬁqna(;;l\leemw(égle() makePayment(...) getSubtotal(
makePayment(...) getTotal()
completedSales l
{ordered} Payment
payment1 amount : Money
0O Design2-9, C5431 F06, BG Ryder/A Rountev 4

Visibility between Objects

- If object A sends a message to object
B, then B must be visible to A
- i.e., A should have access to a reference
(a pointer) to B
- Ensure the necessary visibility

- If the interaction diagram shows a
message, need to choose the appropriate
visibility mechanism to make the message
possible

0O Design2-9, CS431 F06, BG Ryder/A Rountev 5

Attribute & Parameter Visibility

- Reference to B is an attribute of A

- Relatively permanent: often exists for the
lifetime of the objects (common)
- E.g., Register needs to send getSpec(id) to

ProductCatalog class Register {

private ProductCatalog catalog; ... }

- Reference to B is a parameter to a
method of A
- Relatively temporary: exists only for the
scope of the method (2nd most common)
- Often turned into an attribute

0O Design2-9, C5431 F06, BG Ryder/A Rountev 6

Example of Parameter Visibility
—»>

_>
enterItem(id,qty) 2:makeLineItem(p,qty)

:Register

1:p:=getSpec(id) ¢ :Sale
:Product

Catalog 2.1:create(p,qty)|
parameter visibility from Sale to
ProductSpecification
void makeLineItem(p,qty) {
s = new SalesLineItem(p,qty):
inside the SLI constructor, p

is assigned to an attribute of SLI
Obd 3@15-9, 5431 F06, BG Ryder/A Rountev 7

s:SalesLineItem

Local Visibility

* B is a local object within a method of A

- A new B object is created and a reference
to it is assigned to a local variable

- An object reference returned by a call is
assigned to a local variable

- Relatively temporary: only exists within the
scope of the method (3rd most common)

- Often transformed into attribute
visibility

0O Design2-9, C5431 F06, BG Ryder/A Rountev 8

Example of Local Visibility
—»>

enterItem(id,qty)

:Register
1:p:=getSpec(id) ¢

:Product
Catalog

enterItem(id,qty) {
local visibility from Register
to ProductSpecification

p = catalog.getSpec(id); . . .

0O Design2-9, CS431 F06, BG Ryder/A Rountev

Global Visibility

- B is defined in a scope that encloses
A's scope
- E.g., a static field is “global” for all
methods inside its declaring class

- Relatively permanent: typically persists as
long as A and B exist (least common)

- Should be used cautiously: may violate
the principles of object orientation

* Should use Singleton pattern instead

0O Design2-9, C5431 F06, BG Ryder/A Rountev

Design Class Diagrams (DCD)

Sale

Register Captures dg‘re
1 0 time

isComplete:bool

enterItem(..)

makeLineItem(..)

- Design classes

+ Identified while creating interaction diagrams, inspired
by domain model

- Attributes
+ Correspond to domain model

- Methods

- Determined from actions in digrams
- Associations with navigability

0O Design2-9, CS431 F06, BG Ryder/A Rountev

Type Information

- Types of attributes (useful to show)

* Types of method parameters/returns
(can be omitted)

Register Register

VsS.

enterItem enterItem(ItemID,int)

0O Design2-9, C5431 F06, BG Ryder/A Rountev

“create” messages

* create messages:

- Language-independent

- No create methods in the design classes
* For many languages: constructor(s)

- Sometimes people do not show constructors
in the DCD: reduces the clutter

0O Design2-9, CS431 F06, BG Ryder/A Rountev 13

getters and setters for attributes

* Internal variables that implement the
attribute are private and hidden

- e.g. internally a Point attribute may be a
pair of floating-point numbers

- E.g., for price attribute of type Money
* getPrice():Money
+ setPrice(amt:Money)
* Methods are typically not shown in
design class (just show attribute)

0O Design2-9, C5431 F06, BG Ryder/A Rountev 14

Associations in the DCD

 Based on the interaction diagrams and the
domain model
- Often the associations already exist in the

domain model

- Will there be an ongoing, somewhat
permanent connection between an instance
of X and an instance of Y in order to
satisfy the interactions?

- Common cases to consider: (1) X sends a
message to Y or (2) X creates Y

0O Design2-9, CS431 F06, BG Ryder/A Rountev 15

Partial Communication Diagram

—»>

_>
enterItem(id,qty) 2:makeLineItem(p,

:Register
<_
1:p:=getSpec(id)

:Product :Sale [~
Catalog

2.1:create(p,qty) |v
s:SalesLineItem

0O Design2-9, C5431 F06, BG Ryder/A Rountev 16

)

Part of the DCD

Sale
Register | Captures flcr‘: :
en‘rer']?;‘em(..) 1 0.. isComplete:bool
* makeLineItem(..)
. s
Looks-in enterItem(id,qty) .
:Register
P C <
1 <~ roductCatalog 1:1:= getSpec(id)
getSpec(..)
navigability :Product
00 Design2-9, €431 FO6, BG Ryder/A Rountev C a.'. GI og 17
Navigability

- Property of an association
- Shows how it will be implemented

- Who is responsible for knowing the
association?

- Not part of the domain model

* Navigability from Register to Sale:
should be able to traverse the
association in that direction

- Register is responsible for knowing the
associated Sale, but not vice versa

0O Design2-9, C5431 F06, BG Ryder/A Rountev 18

Navigability

* Could be 1-way or 2-way
-X << Y

* Not mandatory, but most associations
in the DCD should have it

- Implies attribute visibility

- Will be implemented by an attribute in
class Register

- The attribute is not shown in the DCD: it
is implied by the navigability

0O Design2-9, CS431 F06, BG Ryder/A Rountev

Creating a Container

- When creating this interaction
diagram, we also considered the
domain model Sale

date

time

1

1..*
SalesLineItem
quantity

Contains

0O Design2-9, C5431 F06, BG Ryder/A Rountev 20

10

Creating a Container

- Based on the domain model: decided
to use a container for SalesLineItems
- Sale will create the container
- This will happen when Sale is created

- Very common case for one-to-many
associations: an attribute of Sale
refers to the container

- Attribute visibility from Sale to the
container

0O Design2-9, CS431 F06, BG Ryder/A Rountev

21

Representation in the DCD

* Not necessary to show Sale
a separate container
class

- The navigability implies 1 .
that Sale has an { * Contains
attribute that refers “Sales
to a set of LineItem
SalesLineItem objects quantity

- i.e., to a container
storing these objects

0O Design2-9, C5431 F06, BG Ryder/A Rountev

22

11

SalesLineItem & ProductSpecification

 Domain Model: Product
Specification
descr:String
1| price:Money
id:ITtemID
- Based on the interaction diagrams:
relatively permanent connection

* Decision: attribute visibility from
SalesLineItem to ProductSpec

Sales Described-by
LineItem *

quantity:Integer

0O Design2-9, CS431 F06, BG Ryder/A Rountev 23

Design Class Diagram

Sale
1 Contains Product
1.*x *° Specification
Sales descr:Strin
LineItem Described-b pr'ice:Moneg
quantity:Integer | * 1| id:ItemID

- Looks a lot like the domain model, but
has more details worked out

0O Design2-9, C5431 F06, BG Ryder/A Rountev 24

12

Accessibility of Methods and Fields

* Public: can be accessed by any code
- UML notation: +foo

* Private: can be accessed only by code inside
the class
- UML notation: -foo

* Protected: can be accessed only by code in
the class and in its subclasses
- UML notation: #foo

* Fields usually are not public, but have
getters and setters instead

0O Design2-9, CS431 F06, BG Ryder/A Rountev 25

UML Notation

private
static X
field
-num:int
+X .
ublic
public /+numlnstances:int/zfaﬁc
constructor method

note: “static constructor”
is meaningless: by definition,
a constructor is invoked on an object

0O Design2-9, C5431 F06, BG Ryder/A Rountev 26

13

A Quick Look Ahead

* How to do implementation from design
artifacts?

0O Design2-9, CS431 F06, BG Ryder/A Rountev 27

UP Artifacts

Artifact Incep | Elab | Const | Trans
Use-Case Model X X
Supplem. Spec X X
Domain Model X
Design Model X X
Implem. Model X X X

Requirements analysis: Use-Case Model +
Supplementary Specification

Domain analysis: Domain Model

Design: Design Model

Coding: Implementation Model

G Ryder/A Rountev 28

14

Implementation Model

« UP: code, database definitions, HTML
pages, efc.

* Built from the design model: interaction
diagrams and DCDs

- Design a little, code a little

* May deviate from the design
- The design is not perfect

- In the next iteration: the design will be
modified based on the code
* Reverse engineering

0O Design2-9, CS431 F06, BG Ryder/A Rountev 29

Mapping Design to Code

- DCDs -> classes in code

- DCD: class names, methods, attributes,
superclasses, associations, etc.

- Tools can do this automatically

* Interaction diagrams -> method
bodies

- Interactions in the design model imply
that certain statements should be
included in a method's body

0O Design2-9, C5431 F06, BG Ryder/A Rountev 30

15

SalesLineItem
quantity:Integer

Example

Described-b

Product
Specification
descr:String

getSubtotal()

* 1

public class SalesLineItem {
private int quantity;
private ProductSpecification productSpec
public SalesLineItem(ProductSpecifications, int q) {..}
public Money getSubtotal() {...}

0O Design2-9, CS431 F06, BG Ryder/A Rountev

) price:Money
id:TtemID

N

31

Another Example: Register class

Sale
Register Captures date
time
makeNewSale() 1 0.. isComplete
enterItem() makeLineItem()
endSale() becomeComplete()
makePayment() makePayment ()
* getTotal()
Looks-in ProductCatalog

0O Design2-9, C5431 F06, BG Ryder/A Rountev

1 geTSt').ec(..)

32

16

Java class "Register”

public class Register {
private Sale sale;
private ProductCatalog catalog;

public Register (ProductCatalog c) {
this.catalog = c; //

}
public void makeNewSale() {...}

public void enterItem(ItemID id, int qty) {..}
public void endSale() {..}
public void makePayment(Money amt) {..}

OJDesign2-9, CS431 FO6, BG Ryder/A Rountev 33

Method makeNewSale
makeN;:vSale()

_>
1:create()

:Sale

:Register

<_
| 1.1:create()
:SalesLineItem ||

public class Register {

;r'ivate Sale sale;
public void makeNewSale() {
this.sale = new Sale():

}

0O Design2-9, C5431 F06, BG Ryder/A Rountev 34

17

N Method enterItem()

enterItem(id,qty)

:Register

_>
2:makeLineItem(p,qty)

_>
1:p:=getSpec(id)

public class Register {

:Sale

:Product
Catalog

public void enterItem(ItemID id, int qty) {
ProductSpecification p =
this.catalog.getSpec(id);
this.sale.makelLineItem(p,qty):

}

OO}esignz-Q, CS431 FO6, BG Ryder/A Rountev

35

18

