
1

OO Design2-9, CS431 F06, BG Ryder/A Rountev 1

OO Design2

• POS example - revisited
• LAR Ch 18 has entire POS design explained
• READ THIS CHAPTER and ASK Q’s in class

• Design class diagrams
– Kinds of visibility of objects to one
another

– Navigability of associations
• How to do implementation from design
artifacts?

OO Design2-9, CS431 F06, BG Ryder/A Rountev 2

Design Artifacts

• Design Class Diagrams (DCDs)
• Differences from Conceptual Class Diagrams in
Domain model

– Contain types, directed associations with
multiplicities, numbered actions

– How visibility between objects is provided

• Interaction Diagrams
– Sequence Diagrams

– Vertical sequence format

– Communication Diagrams
– Network format

2

OO Design2-9, CS431 F06, BG Ryder/A Rountev 3

Communication Diagram For POS

:RegisterenterItem(id,qty)

:Sale

:SalesLineItem:SalesLineItem

2.2:add(s)

2:makeLineItem(p,qty)

s:SalesLineItem
2.1:create(p,qty)

:Product
Catalog

:Product
Specification
:Product
Specification

1:p:=getSpec(id)

1.1:p:=find(id)

Façade Controller

Creator
(of SLI)

Creator (of Sale)

OO Design2-9, CS431 F06, BG Ryder/A Rountev 4

Design Class Diagram for POS
(LAR, Fig 18.17)

SalesLineItem

quantity : Integer

getSubtotal()

ProductCatalog

...

getProductDesc(...)

ProductDescription

description : Text
price : Money
itemID: ItemID

...

Store

address : Address
name : Text

addCompleteSale(...)

Payment

amount : Money

...

1..*

1..*

Register

...

endSale()
enterItem(...)
makeNewSale()
makePayment(...)

Sale

isComplete : Boolean
time : DateTime

becomeComplete()
makeLineItem(...)
makePayment(...)
getTotal()

1

1

1

1

1

1

*

catalog

catalog

register

currentSale

descriptions
{Map}

lineItems
{ordered}

payment

completedSales
{ordered}

description

3

OO Design2-9, CS431 F06, BG Ryder/A Rountev 5

Visibility between Objects

• If object A sends a message to object
B, then B must be visible to A
– i.e., A should have access to a reference
(a pointer) to B

• Ensure the necessary visibility
– If the interaction diagram shows a
message, need to choose the appropriate
visibility mechanism to make the message
possible

OO Design2-9, CS431 F06, BG Ryder/A Rountev 6

Attribute & Parameter Visibility

• Reference to B is an attribute of A
– Relatively permanent: often exists for the
lifetime of the objects (common)
• E.g., Register needs to send getSpec(id) to
ProductCatalog

• Reference to B is a parameter to a
method of A
– Relatively temporary: exists only for the
scope of the method (2nd most common)
• Often turned into an attribute

class Register {
 private ProductCatalog catalog; ... }

4

OO Design2-9, CS431 F06, BG Ryder/A Rountev 7

Example of Parameter Visibility

:RegisterenterItem(id,qty)

:Sale

2:makeLineItem(p,qty)

s:SalesLineItem

2.1:create(p,qty)
:Product
Catalog

1:p:=getSpec(id)

parameter visibility from Sale to
ProductSpecification
void makeLineItem(p,qty) {
 s = new SalesLineItem(p,qty);
 inside the SLI constructor, p
 is assigned to an attribute of SLI
object

OO Design2-9, CS431 F06, BG Ryder/A Rountev 8

Local Visibility

• B is a local object within a method of A
– A new B object is created and a reference
to it is assigned to a local variable

– An object reference returned by a call is
assigned to a local variable

– Relatively temporary: only exists within the
scope of the method (3rd most common)

• Often transformed into attribute
visibility

5

OO Design2-9, CS431 F06, BG Ryder/A Rountev 9

Example of Local Visibility

:RegisterenterItem(id,qty)

:Product
Catalog

1:p:=getSpec(id)

enterItem(id,qty) {
 local visibility from Register
 to ProductSpecification
 p = catalog.getSpec(id); . . .
}

OO Design2-9, CS431 F06, BG Ryder/A Rountev 10

Global Visibility

• B is defined in a scope that encloses
A’s scope
– E.g., a static field is “global” for all
methods inside its declaring class

– Relatively permanent: typically persists as
long as A and B exist (least common)

• Should be used cautiously: may violate
the principles of object orientation

• Should use Singleton pattern instead

6

OO Design2-9, CS431 F06, BG Ryder/A Rountev 11

Design Class Diagrams (DCD)

Register

enterItem(..)

Sale
date
time

isComplete:bool
makeLineItem(..)

Captures
1 0..1

• Design classes
• Identified while creating interaction diagrams, inspired

by domain model
– Attributes

• Correspond to domain model
– Methods

• Determined from actions in digrams

• Associations with navigability

OO Design2-9, CS431 F06, BG Ryder/A Rountev 12

Type Information

• Types of attributes (useful to show)
• Types of method parameters/returns
(can be omitted)

vs.
Register

enterItem

Register

enterItem(ItemID,int)

7

OO Design2-9, CS431 F06, BG Ryder/A Rountev 13

“create” messages

• create messages:
– Language-independent
– No create methods in the design classes

• For many languages: constructor(s)
– Sometimes people do not show constructors
in the DCD: reduces the clutter

OO Design2-9, CS431 F06, BG Ryder/A Rountev 14

getters and setters for attributes
• Internal variables that implement the
attribute are private and hidden
– e.g. internally a Point attribute may be a
pair of floating-point numbers

– E.g., for price attribute of type Money
• getPrice():Money
• setPrice(amt:Money)

• Methods are typically not shown in
design class (just show attribute)

8

OO Design2-9, CS431 F06, BG Ryder/A Rountev 15

Associations in the DCD

• Based on the interaction diagrams and the
domain model
– Often the associations already exist in the

domain model
• Will there be an ongoing, somewhat

permanent connection between an instance
of X and an instance of Y in order to
satisfy the interactions?

• Common cases to consider: (1) X sends a
message to Y or (2) X creates Y

OO Design2-9, CS431 F06, BG Ryder/A Rountev 16

Partial Communication Diagram

:RegisterenterItem(id,qty)

:Sale

2:makeLineItem(p,qty)

s:SalesLineItem

2.1:create(p,qty)

:Product
Catalog

1:p:=getSpec(id)

9

OO Design2-9, CS431 F06, BG Ryder/A Rountev 17

Part of the DCD

Register
…

enterItem(..)

Sale
date
time

isComplete:bool
makeLineItem(..)

Captures
1 0..1

ProductCatalog
…

getSpec(..)

Looks-in

1

*

navigability

:RegisterenterItem(id,qty)

:Product
Catalog

1:p:=getSpec(id)

OO Design2-9, CS431 F06, BG Ryder/A Rountev 18

Navigability
• Property of an association

– Shows how it will be implemented
– Who is responsible for knowing the
association?

– Not part of the domain model
• Navigability from Register to Sale:
should be able to traverse the
association in that direction
– Register is responsible for knowing the
associated Sale, but not vice versa

10

OO Design2-9, CS431 F06, BG Ryder/A Rountev 19

Navigability

• Could be 1-way or 2-way
– X Y

• Not mandatory, but most associations
in the DCD should have it

• Implies attribute visibility
– Will be implemented by an attribute in
class Register

– The attribute is not shown in the DCD: it
is implied by the navigability

OO Design2-9, CS431 F06, BG Ryder/A Rountev 20

Creating a Container

• When creating this interaction
diagram, we also considered the
domain model Sale

date
time

SalesLineItem
quantity

Contains
1

1..*

11

OO Design2-9, CS431 F06, BG Ryder/A Rountev 21

Creating a Container

• Based on the domain model: decided
to use a container for SalesLineItems
– Sale will create the container
– This will happen when Sale is created

• Very common case for one-to-many
associations: an attribute of Sale
refers to the container
– Attribute visibility from Sale to the
container

OO Design2-9, CS431 F06, BG Ryder/A Rountev 22

Representation in the DCD
• Not necessary to show
a separate container
class

• The navigability implies
that Sale has an
attribute that refers
to a set of
SalesLineItem objects
– i.e., to a container
storing these objects

Sale
…
…

Sales
LineItem
quantity

…

Contains
1

1..*

12

OO Design2-9, CS431 F06, BG Ryder/A Rountev 23

SalesLineItem & ProductSpecification
• Domain Model:

• Based on the interaction diagrams:
relatively permanent connection

• Decision: attribute visibility from
SalesLineItem to ProductSpec

Sales
LineItem

quantity:Integer

Product
Specification
descr:String
price:Money
id:ItemID

Described-by
1*

OO Design2-9, CS431 F06, BG Ryder/A Rountev 24

Design Class Diagram

• Looks a lot like the domain model, but
has more details worked out

Sales
LineItem

quantity:Integer
…

Product
Specification
descr:String
price:Money
id:ItemID

…

Described-by
1*

Sale
…
…

Contains
1

1..*

13

OO Design2-9, CS431 F06, BG Ryder/A Rountev 25

Accessibility of Methods and Fields

• Public: can be accessed by any code
– UML notation: +foo

• Private: can be accessed only by code inside
the class
– UML notation: -foo

• Protected: can be accessed only by code in
the class and in its subclasses
– UML notation: #foo

• Fields usually are not public, but have
getters and setters instead

OO Design2-9, CS431 F06, BG Ryder/A Rountev 26

UML Notation
private
static
field

public
static
method

public
constructor

note: “static constructor”
is meaningless: by definition,
a constructor is invoked on an object

14

OO Design2-9, CS431 F06, BG Ryder/A Rountev 27

A Quick Look Ahead

• How to do implementation from design
artifacts?

OO Design2-9, CS431 F06, BG Ryder/A Rountev 28

UP Artifacts

XDomain Model

XXXImplem. Model
XXDesign Model

XXSupplem. Spec
XXUse-Case Model

TransConstElabIncepArtifact

Requirements analysis: Use-Case Model +
 Supplementary Specification
Domain analysis: Domain Model
Design: Design Model
Coding: Implementation Model

15

OO Design2-9, CS431 F06, BG Ryder/A Rountev 29

Implementation Model

• UP: code, database definitions, HTML
pages, etc.

• Built from the design model: interaction
diagrams and DCDs

• Design a little, code a little
• May deviate from the design

– The design is not perfect
– In the next iteration: the design will be

modified based on the code
• Reverse engineering

OO Design2-9, CS431 F06, BG Ryder/A Rountev 30

Mapping Design to Code

• DCDs -> classes in code
– DCD: class names, methods, attributes,
superclasses, associations, etc.

– Tools can do this automatically
• Interaction diagrams -> method
bodies
– Interactions in the design model imply
that certain statements should be
included in a method’s body

16

OO Design2-9, CS431 F06, BG Ryder/A Rountev 31

Example

public class SalesLineItem {
private int quantity;
private ProductSpecification productSpec;
public SalesLineItem(ProductSpecification s, int q) {…}
public Money getSubtotal() {…}

}

SalesLineItem
quantity:Integer

getSubtotal()

Product
Specification
descr:String
price:Money
id:ItemID

…

Described-by
1*

OO Design2-9, CS431 F06, BG Ryder/A Rountev 32

Another Example: Register class

Register
…

makeNewSale()
enterItem()

endSale()
makePayment()

Sale
date
time

isComplete
makeLineItem()

becomeComplete()
makePayment()

getTotal()

Captures
1 0..1

ProductCatalog
…

getSpec(..)

Looks-in
1

*

17

OO Design2-9, CS431 F06, BG Ryder/A Rountev 33

Java class “Register”
public class Register {
 private Sale sale;
 private ProductCatalog catalog;
 public Register (ProductCatalog c) {

this.catalog = c; //
 }
 public void makeNewSale() {…}
 public void enterItem(ItemID id, int qty) {…}
 public void endSale() {…}
 public void makePayment(Money amt) {…}
}

OO Design2-9, CS431 F06, BG Ryder/A Rountev 34

Method makeNewSale

:RegistermakeNewSale() 1:create() :Sale

:SalesLineItem:SalesLineItem
1.1:create()

public class Register {
 …
 private Sale sale;
 public void makeNewSale() {
 this.sale = new Sale();
 }
}

18

OO Design2-9, CS431 F06, BG Ryder/A Rountev 35

Method enterItem()

:RegisterenterItem(id,qty)

:Sale

2:makeLineItem(p,qty)

:Product
Catalog

1:p:=getSpec(id)

public class Register {
 …
 public void enterItem(ItemID id, int qty) {
 ProductSpecification p =

this.catalog.getSpec(id);
this.sale.makeLineItem(p,qty);

 }
}

