
1

OO Design3-9, CS431 F06, BG Ryder/A Rountev
1

OO Design3

• Sample of software design issues
– Class hierarchies

• Use of polymorphism
• Liskov substitutability principle
• Avoiding potential problems

– Protected variations
• Mechanisms to protect code from later changes
• Encapsulation, abstraction, polymorphism,
indirection

OO Design3-9, CS431 F06, BG Ryder/A Rountev
2

Class Hierarchies

• Class hierarchies use is-a inheritance
– How to ensure the correctness of
extensions?

• Java: class B extends A { class B extends A { …… } }
– Single inheritance (one superclass)

• Every member (i.e., method and field) of
A is inherited by B

• B may override inherited methods

2

OO Design3-9, CS431 F06, BG Ryder/A Rountev
3

Polymorphism

• A variable may refer to (point to)
objects of different classes
– Calls through this variable may invoke
different methods

– Can use to specialize code by type or to
choose between alternatives based on type

• Call: x.area() in Java
– If x points to a Rectangle object, this call
invokes method area() in Rectangle

– if x points to a Square object, invokes an
overriding method area()

OO Design3-9, CS431 F06, BG Ryder/A Rountev
4

Liskov Substitution Principle (LSP)

• A subclass object must be substitutable
for an object of its superclass
– Named after Barbara Liskov (MIT)

• E.g.: class A, subclass B
– In class X declare method m(A a) { … }
– If m() behaves correctly when given an A
object, it should also behave correctly when
given a B object (without m() knowing about
the existence of B)

3

OO Design3-9, CS431 F06, BG Ryder/A Rountev
5

Liskov Substitution Principle (LSP)

• Polymorphism: if we add a new subclass
of A, we don’t need to recompile m()
– Programming language mechanism

• LSP is stronger: if we add a new
subclass of A, m() will still be correct

OO Design3-9, CS431 F06, BG Ryder/A Rountev
6

A Classic Example

class Rectangle {
 protected double h,w;
 protected Point top_left;
 public void setHeight(double x) { h = x; }
 public void setWidth(double x) { w = x; }
 public double getHeight() { return h; }
 public double getWidth() { return w; }
 public double area() { return h*w; } … }

• Suppose we have written a lot of code that
uses Rectangle (e.g. graphics code)

4

OO Design3-9, CS431 F06, BG Ryder/A Rountev
7

Adding a Square

• The customer decides that we need a
new class Square
– A square is a kind of rectangle, right?
– class Square extends Rectangle { … }

• With polymorphism: don’t have to
recompile existing code
– e.g. void m(Rectangle x) { … } does not have
to be recompiled

OO Design3-9, CS431 F06, BG Ryder/A Rountev
8

Problems

• Square doesn’t really need both w and h
– Wasted memory (relatively minor issue)

• Square inherits setHeight() and
setWidth(), but this may lead to
incorrect behavior

Square s = new Square();
…
Rectangle r = s;
…
r.setHeight(5);
r.setWidth(10);
???

5

OO Design3-9, CS431 F06, BG Ryder/A Rountev
9

One Solution

• Put guards in client code of Rectangle class
– Before changing the size of a Rectangle, check

if is it a Square

• For client code: increases coupling, reduces
cohesion, makes it fragile -- Bad idea

Rectangle r;
. . .
r.setHeight(5);
if (r instanceof Square) r.setWidth(5);

OO Design3-9, CS431 F06, BG Ryder/A Rountev
10

Another Solution

• Override setHeight() and setWidth() in
Square class

• BUT problems are possible when store a
Square in a Rectangle reference

class Square extends Rectangle {
 public void setHeight(double x)

{ h = x; w = x; }
 public void setWidth(double x)
 { h = x; w = x; }
}

6

OO Design3-9, CS431 F06, BG Ryder/A Rountev
11

More Problems

• When we only had Rectangle objects, this
was valid code, but now it may break.
Who’s to blame?

• The programmer of m() is justified in
writing this code

• There is something wrong with Square …

void m(Rectangle r) {
r.setHeight(5);
r.setWidth(4);
assert (r.area() == 20);

}

OO Design3-9, CS431 F06, BG Ryder/A Rountev
12

Back to LSP

• If m was written correctly with respect to a
superclass, it should also be correct for the
subclass
– Square violates LSP!

Postcondition for Rectangle.setHeight()
 h == x and w == wold
Postcondition for Square.setHeight()
 h == x and w == x
The subclass postcondition does not imply
the superclass postcondition

7

OO Design3-9, CS431 F06, BG Ryder/A Rountev
13

LSP is about Behavior

• The behavior of Square.setHeight() does
not conform to the behavior of method
Rectangle.setHeight()

• LSP: Inheritance should guarantee
conformance of behavior
– Called behavioral subtyping
– It may be OK to violate it, but the violation

should be examined carefully and may depend on
the clients of the hierarchy

OO Design3-9, CS431 F06, BG Ryder/A Rountev
14

Ensuring LSP

• One way: consider preconditions and
postconditions
– Whenever a subclass inherits or overrides an

operation from a superclass
• Precondition for the superclass should imply

the precondition for the subclass
• Postcondition for the subclass should imply

the postcondition for the superclass
– Contravariant conditions

8

OO Design3-9, CS431 F06, BG Ryder/A Rountev
15

A Simple Example

• class Employee, with subclass Manager
• Operation double calcBonus(int performeval)

– Calculates a bonus percentage
– Defined in Employee; overridden in Manager

• The operation in the subclass
– should not expect something more restrictive

(pre-condition)
– should not produce something less restrictive

(post-condition)

OO Design3-9, CS431 F06, BG Ryder/A Rountev
16

Preconditions and Postconditions

• Employee.calcBonus:
– Precondition: 0 ≤ eval ≤ 5
– Postcondition 0% ≤ bonus ≤ 20%

• 0 ≤ eval ≤ 5 should imply the precondition for
Manager.calcBonus

• e.g., this cannot be 1 ≤ eval ≤ 3, can be 0 ≤ eval ≤ 6,

• Postcondition for Manager.calcBonus should
imply 0% ≤ bonus ≤ 20%
– e.g., this cannot be 0% ≤ bonus ≤ 30% but can be

0% ≤ bonus ≤ 15%

9

OO Design3-9, CS431 F06, BG Ryder/A Rountev
17

Principle of Protected Variations

• Fundamental problem in design: current
and future variations

• Protect the rest of the system from
these variations

• Typical mechanisms for protection
– Encapsulation
– Abstraction
– Polymorphism
– Indirection

OO Design3-9, CS431 F06, BG Ryder/A Rountev
18

Object-Oriented Encapsulation

• Packaging of operations and attributes
• Attributes represent internal state
that is not directly accessible
– Hidden behind a “wall” of operations

• State is accessible and modifiable only
via the operations

• Protection against
– Changes in data representation
– Changes in algorithm

10

OO Design3-9, CS431 F06, BG Ryder/A Rountev
19

Abstraction

• Common theme in software design
• Low-level abstractions

– Procedural abstractions: subroutines
– Data abstractions: classes

• Higher-level abstractions for object-
oriented design

• e.g., abstract classes
• Protection against multiple classes needed for
later extension

OO Design3-9, CS431 F06, BG Ryder/A Rountev
20

Using Abstractions

• Principle: write the client code against
an abstraction of the server
– In case of current or future variations of
the server

Client Server

Client Abstract
Server

Server

11

OO Design3-9, CS431 F06, BG Ryder/A Rountev
21

Abstraction Through Subclasses
• Write the client
against a superclass
– Often an abstract superclass

• Variations in the server:
introduce a new subclass

• If a new kind of server is added, client
code does not need to be changed
– Protection against new kinds of servers

Client Abstract
Server

Server

OO Design3-9, CS431 F06, BG Ryder/A Rountev
22

Similar Example: POS System

• External tax calculator
– Invoked across the network

• e.g., through TPC, SOAP, Java RMI, etc.
• Want to be able to plug different tax
calculators from different vendors
– Adaptability is specified in the
requirements

– Cannot anticipate the interfaces we will
encounter in the future

12

OO Design3-9, CS431 F06, BG Ryder/A Rountev
23

Indirection and Abstraction

• Different interfaces: can create adapter
classes running on the same machine as the
POS system
– Will deal with component-specific issues
– Provide a level of indirection

• All adapter classes will implement a common
interface that will be used by the POS
system
– Provides an abstraction of an adapter
– Add a new tax system by adding a new adaptor

OO Design3-9, CS431 F06, BG Ryder/A Rountev
24

Example
ITaxCalculatorAdapter
getTaxes(Sale):TaxList

TaxMasterAdapter
getTaxes(Sale):TaxList

TurboTaxAdapter
getTaxes(Sale):TaxList

JoesTaxBonanzaAdapter
getTaxes(Sale):TaxList

