
1

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 1

Design Patterns

• More design patterns (GoF)
– Structural: Adapter, Bridge, Façade
– Creational: Abstract Factory, Singleton
– Behavioral: Observer, Iterator, State,
Visitor

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 2

Design Patterns

• Design patterns have become very popular
in the last decade or so

• Major source: GoF book 1995
• “Design Patterns: Elements of Reusable Object-

Oriented Software”
• Gamma, Helm, Johnson, Vlissides (gang of 4)

• Patterns describe well-known solutions to
common design problems

• Used in Java libraries, especially in the GUI
libraries

2

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 3

Design Patterns (LAR Ch26; GoF)

• Structural
• Concerned with how classes and objects are composed to

make larger structures (Adapter, Bridge, Composite,
Façade)

• Creational
• Abstract the instantiation process to make a system

independent of how its objects are created & represented
(Abstract Factory, Singleton)

• Behavioral
• Describe patterns of communication and interaction between

objects (algorithms and responsibility assignment) (Observer,
State, Strategy, Mediator)

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 4

Adapter Pattern: Interface Matcher
• Problem: incompatible interfaces
• Solution: create a wrapper that maps one

interface to another
• Key point: neither interface has to change and they

execute in decoupled manner
– Think of how you use a power plug adaptor when you travel

to Europe

• Example:
– Client written against some interface
– Server with the right functionality but with the

wrong interface

3

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 5

Example

• Option 1: Change the client, bad
• Option 2: Change Zserver, too hard
• Option 3: Create an adapter to wrap Zserver to

obtain necessary functionality, good soln

Client Abstract
Server
foo()

Server2
foo()

ZServer
bar(int)

Server1
foo()

ZAdapter
foo() 1

1

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 6

Sample Java Code

abstract class AbstractServer { abstract void foo();
}

class ZAdapter extends AbstractServer {
private ZServer z;
public ZAdapter() { z = new ZServer(); }
public void foo() { z.bar(5000); }//wrap call to
ZServer method

}
…
somewhere in client code:
AbstractServer s = new ZAdapter();

4

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 7

Hierarchy of Adaptees

Client Abstract
Server
foo()

Server2
foo()

ZServer
bar(int)

Server1
foo()

ZAdapter
foo() 1 1

BestZServer
bar(int)

BetterZServer
bar(int)

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 8

Sample Java Code

abstract class AbstractServer { abstract void foo();
}

class ZAdapter extends AbstractServer {
private ZServer z;
public ZAdapter(int perf) {

if (perf > 10) z = new BestZServer();
else if (perf > 3) z = new BetterZServer();
else z = new ZServer();

}
public void foo() { z.bar(5000); }

}

5

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 9

Another Adapter Example (GoF)
• Drawing editor: diagrams built with
graphical elements

Editor
Shape

boundingBox():Box
isEmpty():boolean

PolygonShape
boundingBox():Box
isEmpty():boolean

LineShape
boundingBox():Box
isEmpty():boolean

Box
bottomLeft:Point
topRight:Point

Box(int,int,int,int)

Point
x,y: double

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 10

Adding TextShape
• Complicated, so let’s reuse existing code

• Problem: mismatched interfaces
• Solution: create a TextShape adapter

FreeText
origin:Point

width,height:double
getOrigin():Point
getWidth():double
getHeight():double
isEmpty():boolean

6

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 11

Sample Java Code
class TextShape implements Shape {

private FreeText t;
public TextShape() { t = new FreeText(); }
public boolean isEmpty() { return t.isEmpty(); }
public Box boundingBox() {

int x1 = toInt(t.getOrigin().getX());
int y1 = toInt(t.getOrigin().getY());
int x2 = toInt(x1 + t.getWidth());
int y2 = toInt(y2 + t.getHeight());
return new Box(x1,y1,x2,y2); }

private int toInt(double) { … } }

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 12

Pluggable Adapters

• Preparation for future adaptation
– Define a narrow interface

• Future users of our code will write
adapters that implement the interface

MyCode Adaptation
Interface unit of reuse

7

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 13

Example: Display of Trees

TreeDisplay TreeAccess
getChildren(Node)
getLabel(Node)

getRoot()

DirectoryAccess ClassHierarchyAccess

OrganizationalChartAccess

FileSystem AST

CompanyModel

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 14

Bridge Pattern

• GoF: “Decouple an abstraction from
its implementation so that the two
can vary independently”

• Key issue: dimensions of variability
• For single dimension: polymorphism
based on inheritance or interfaces
– e.g., different kinds of shapes

• What if there are several
dimensions?

8

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 15

Example - Why necessary?

• Program that draws rectangles
– Two drawing classes D1 and D2

• Each rectangle uses only one of the two
– When a rectangle is created, we are
told which drawing class it will use

• D1 provides
– draw_a_line(x1,y1,x2,y2) – two vertices
– draw_a_circle(x,y,r) – center and radius

• D2: drawln(x1,x2,y1,y2), drawcr(x,y,r)

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 16

Possible Design

9

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 17

Rectangle Code
abstract class Rectangle {

public void draw() {
 drawLine(p1x,p1y,p2x,p1y);
 drawLine(p1x,p1y,p1x,p2y);
 drawLine(p2x,p2y,p2x,p1y);
 drawLine(p2x,p2y,p1x,p2y);
protected abstract void

drawLine(double,double,double,double);
private double p1x, p1y, p2x, p2y;
// constructor not shown }

(p1x,p1y)

(p2x,p2y)(p1x,p2y)

(p2x,p1y)

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 18

Subclasses
class V1Rectangle extends Rectangle {

public void drawLine(double x1,double y1,
 double x2,double y2)
 { d1.draw_a_line(x1,y1,x2,y2); }

public V1Rectangle(double x1,double y1,
double x2,double y1,D1 d)

{ super(x1,y1,x2,y2); d1 = d; }
private D1 d1; }

class V2Rectangle extends Rectangle {
… d2.drawln(x1,x2,y1,y2) …}

10

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 19

Change in Requirements

• The boss wants circles
• Client code should not make a
distinction between circles and
rectangles w.r.t. drawing

• Solution: superclass Shape, subclasses
Rectangle and Circle

• All existing client code is rewritten to
use Shape

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 20

11

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 21

Problems

• Too many classes
– What if there is another drawing class?
And two other kinds of shapes?
• Total of 3 X 4 = 12 classes

• Many classes are coupled to D1 and
D2
– What if the interface of D1 changed?

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 22

Possible Alternative Solution

Still problems: # classes, coupling

12

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 23

Deeper Problem

• Overuse of inheritance
• Two separate dimensions of variability

– Kinds of shapes
– Implementations for aspects of the display

• Common mistake: using inheritance when
there are better solutions

• Solution: consider object composition
instead of inheritance

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 24

Bridge Pattern
• Consider the two dimensions separately
• Connect (“bridge”) them with composition
• Kinds of shapes

– Shape is an abstract concept
• Abstract class

– Subclasses Rectangle and Circle
– Each shape is responsible for drawing itself

• Abstract method draw in Shape
• Normal methods draw in the subclasses

13

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 25

Dimension 1

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 26

Drawing

• Kinds of drawing
– Abstract class Drawing
– Subclasses V1Drawing and V2Drawing

• Each drawing is responsible for knowing
how to draw lines and circles
– Abstract methods drawLine() and drawCircle() in

Drawing
– Normal methods in the subclasses

• Association with the appropriate D1/D2

14

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 27

Dimension 2

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 28

The Bridge

Has-A

15

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 29

GoF Formulation

• Decouple an abstraction from its
implementation so that the two can
vary independently

• operation calls operationImpl

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 30

Some Options for Implementor
Creation

• How, when, and where is the Implementor
“hooked up” to the Abstraction? Examples:

• Option 1: Constructors of Abstraction
decide, based on input parameters
– e.g. container: if size < 4 use linked list,

otherwise use a hash table
• Option 2: Default implementor, plus

changes based on runtime usage
– If a container grows too much -> switch

• Option 3: Factory pattern (more later)

16

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 31

Facade Pattern
• A large subsystem, many classes
• Simplified view for the clients

– High-level interface that is easier to use
• e.g. we have a 3D drawing library, but we only want

2D, for a subset of the functionality

• Typical reasons
– Use only a subset of the capabilities
– Use in a particular “specialized” way
– Reduce coupling with client code

• Often accessed via Singleton

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 32

Observations
• Possibly does some work, but mostly uses

the existing classes
• Limits access to underlying classes

– If necessary, allows complete hiding, to reduce
coupling, or to track all accesses

• Ease of maintenance
• Facade vs. Adapter -- Differences?

• Both have pre-existing classes and use indirection
• Adapter has interface client needs; Façade does not
• Façade is free to define interface; Adapter is not
• Key difference is their intent

17

Design Patterns-10, CS431 F06, BG Ryder/A Rountev 33

Summary - Structural Patterns
• How are classes and objects composed
to form larger structures?
– Adapter: two incompatible interfaces
– Bridge: independence of an abstraction
from some implementation aspect

– Facade: simpler interface
• Other structural patterns

– Composite, Decorator, Flyweight, Proxy
(GoF)

• Onto creational patterns

