
1

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 1

Design Patterns2

• More design patterns (GoF)
– Structural: Adapter, Bridge, Façade
– Creational: Abstract Factory, Singleton
– Behavioral: Observer, Iterator, State,
Visitor

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 2

Factory Method

• Isolate the creation of certain objects
into a separate method
– The method “manufactures” the objects

• Declared return type: a supertype of
the created object
– The caller does not
know the exact type
of the new object

declared
type
actual
type

2

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 3

Example - Original Class

Pizza orderPizza(String type){
Pizza pizza;
if (type.equals(“cheese”)) { pizza= new CheesePizza();

 } else if (type.equals(“greek”) {pizza= new GreekPizza();
 } else if (type.equals(“pepperoni”) {pizza= new PepperPizza();
 } else …

}
pizza.prepare(); pizza.bake(); pizza.cut(); pizza.box();
return pizza:

}
IDEA: want to separate creation of pizza objects from pizza

operations, for ease of accommodating changes in types of
pizza in the future; need to abstract out shaded code into a
Factory to create the pizzas

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 4

Example
public class SimplePizzaFactory{

public Pizza createPizza(String type){
Pizza pizza = null;
if (type.equals(“cheese”)) { pizza= new CheesePizza();

 } else if (type.equals(“greek”) {pizza= new GreekPizza();
 } else if (type.equals(“pepperoni”) {pizza= new PepperPizza();
 } else …

} return pizza;
}

}
First, create the Factory class which will be responsible for

creating pizza objects

3

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 5

Example - Separate object
creation from client code

public class PizzaStore{
SimplePizzaFactory factory;
public PizzaStore(SimplePizzaFactory factory){

this.factory = factory;
}
public Pizza orderPizza(String type){

Pizza pizza;
pizza = factory.createPizza(type);
pizza.prepare(); pizza.bake(); pizza.cut(); pizza.box();

return pizza;}
}
Second, replace new() with createPizza() call, having

received factory as parameter to PizzaStore
constructor; now have separated pizza creation
from client (PizzaStore);

Each PizzaStore object
has-a SimplePizzaFactory object

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 6

Example - Abstract Factory -
Creation by subclass

public abstract class PizzaStore{
public Pizza orderPizza(String type){
Pizza pizza;
pizza = createPizza(type);
pizza.prepare(); pizza.bake(); pizza.cut(); pizza.box();

return pizza;}
abstract Pizza createPizza(String type);

}
Now the concrete subclasses of PizzaStore (e.g.,

NYPizzaStore, ChicagoPizzaStore) become the
Factory for this class; they each have different
specialized creation methods;

4

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 7

Factory Method

abstract Pizza createPizza(String type);
abstract means subclasses will implement
Pizza is the product to be created
createPizza shows name of product in factory
name, while isolating client code in superclass from
knowing actual kinds of product there are
type allows parameterization to select from among
product varieties

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 8

Creation by Subclasses

• The superclass (PizzaStore) does not know which
Pizza is being instantiated; it just uses the Pizza
object returned to it

• Need subclasses of both Pizza and PizzaStore for
client-specific behavior

• Sometimes: in the superclass, have a “default”
factory implementation
– Subclasses can override it if they need to

5

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 9

Example
PizzaStore
createPizza()
orderPizza()

NYPizzaStore

ChicagoPizzaStore

Creator classes

Pizza

NYStyleCheesePizza
NYStylePepperoniPizza

…
ChicagoCheesePizza
ChicagoPepperoniPizza

Product classes

Actually an example of parallel class hierarchies.

{abstract}

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 10

Summary - Abstract Factory
• A generalization of the “factory” idea

– Put factory method(s) in a separate class

• Usually: several categories of objects
– e.g., GUI elements: windows, scroll bars, etc.

• Separate factory method for each
category
– createWindow():Window
– createScrollBar():ScrollBar
– Window and ScrollBar are abstract classes

6

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 11

Another Factory Example
Abstract factory + concrete factories

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 12

Observations
• Creation of entire families of objects
can be controlled transparently

• Separation of responsibilities
– Factory: decides which objects are needed
– Client: uses objects through their
supertypes

AbstractFactory f = new ConcreteFactory1();

AbstractFactory f = new ConcreteFactory2();

7

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 13

Combining Bridges and Factories

• Factory method: e.g., static method createDrawing()
in Drawing; called by Shape

• Concrete factory class DrawingFactory with method
createDrawing(); called by Shape (and its subclasses)

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 14

Singleton Pattern

• Goal: to ensure that there is only one
instance of a given class X

• Step 1: make all of X’s constructors
private

• Step 2: add in X a private static field
– Usually called instance

• Step 3: add a public static method
that returns the static field
– Usually called getInstance()

8

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 15

Example
class Logger {
 private Logger() { }
 private static Logger instance = null;

public static Logger getInstance() {
if (instance == null) instance = new Logger();
return instance;

}
}

client code: Logger.getInstance().writeLog(…)

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 16

Observations
• On-demand creation

– For performance reasons
– Alternative: upfront creation, by initializing the

static field
• Common reasons for using it

– Unique resources: file system, window manager,
printer spooler, factory, …

• Problems for multi-threaded programs
• What if 2 threads try to do getInstance() simultaneously?

Can we get 2 instances?
– Make getInstance() synchronized?
– Alternatives?

9

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 17

Observer Pattern

• Goal: when one object X changes state, all
its dependent objects Yi are notified and
updated automatically

• Want to reduce coupling
– Do not hard-code calls from X to Yi
– Want if we want to add a new Yi?

• Abstract class Observer, subclassed by
concrete observer classes

• X has a list of all observer objects

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 18

GoF Formulation (Modified)

Subject
attach(Observer)
detach(Observer)

notify()
getXYZ()

Observer
update(Subject)

ConcreteSubject
getXYZ()

doSomething()
subjectState

ConcreteObserver
update(Subject)
observerState

**

{abstract} {abstract}

10

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 19

Interactions

• doSomething() changes the state of the
concrete subject, and invokes notify()

• notify() goes through all attached observers
and invokes update(this) on each one
– this call invokes the corresponding update

method in the concrete observers
• update(Subject s) calls s.getXYZ() to get

details about the state change in order to
update its own state

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 20

Possible Implementation in Java
class Subject {

private HashSet oset = new HashSet();
public attach(Observer o) { oset.add(o); }
public detach(Observer o) { oset.remove(o); }
public notify() {

Iterator it = oset.iterator();
while (it.hasNext()) {

Observer o = (Observer) it.next();
o.update(this);

} } ... }

11

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 21

Spreadsheet Example
• In a spreadsheet, we may have
multiple GUI views of the same data

Foo Window

101080z
202030305050YY
103060X
cba

Foo Window Foo Window

a = 50% b = 30% c = 20%

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 22

Why Use It?

• Changes in object state in one object
require state changes in other objects

• Do not know in advance the dependent
objects

• To decouple the objects
– In anticipation of future changes
– For reuse: can reuse the subjects without the

observers, and vice versa
• The subject is simplified

– Only responsibility: broadcast to observers

12

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 23

Example: standard package java.util

class Observable { // subject
public void addObserver(Observer o) {…}
public void deleteObserver(Observer o) {…}
public void deleteObservers() {…}
public int countObservers() {…}
public void notifyObservers()

 { notifyObservers(null); }
public void notifyObservers(Object arg) {…}

}
interface Observer {
 public void update(Observable o, Object arg); }

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 24

Iterator

• Goal: access the elements of an
aggregate object without exposing its
underlying representation
– e.g. elements of a List, Set, Table, …

• Use separate “iterator” classes
– Each iterator object corresponds to a
particular traversal of the elements

• Used very often, especially in
standard libraries (C++, Java, etc.)

13

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 25

General Form

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 26

Example: java.util.ArrayList

• ArrayList: subclass of AbstractList
– add(index, Object), isEmpty(), …
– Factory method: Iterator iterator()

• Inherited from AbstractList

• Interface Iterator
– Methods hasNext() and next()

• iterator() in AbstractList returns an
instance of an internal class that:
– implements the Iterator interface
– is specific for Lists

14

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 27

Sample Client Code
ArrayList ar;
…
Iterator iter = ar.iterator();
while (iter.hasNext()) {

Object element = iter.next();
// do something with the list element

}

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 28

Observation

• An iterator is associated with a particular
aggregate object

• There may be several active iterators for
the same object at the same time

• Iterate over different aggregates
– AbstractList has subclasses LinkedList,

ArrayList, Vector, and Stack
• Are iterators allowed to change the

aggregate object?
– Sometimes yes, but should be done carefully
– Often is a PL design question

15

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 29

State

• Useful if object should change its
behavior when its internal state
changes

• Encapsulate state into separate classes and
delegate to the object representing the
current state

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 30

 Example

Imagine a TCPConnection object that can be in one of
several states

• TCPEstablished, TCPListen, TCPClosed
– The object responds differently to requests, depending on

what state it is in
– Think of each TCPConnection having a state field that has-a

relation to different TCPState objects during a connection;
then behavior can be delegated to the proper TCPState
object

• When to use?
– When object’s behavior depends on its state and must

change at runtime.
– Operations have large multipart conditionals, depending on

object state

16

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 31

State Pattern

Context
Request()

state.Handle()

State

Handle()

ConcreteState1

Handle()

ConcreteState2

Handle()

state
TCPConnection

TCPEstablished TCPListen …

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 32

Another Example, Intuition

• Gumball machine with NoQuarter,
HasQuarter, Sold, SoldOut states

• Think of how the GumballMachine object
responds differently to the command
turnCrank() depending on which of these
states it is in

• Often this pattern is an alternative to
using lots of conditionals in your code

17

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 33

Visitor Pattern

• Given a composite structure (e.g.,
AST) and operations on each element
(e.g., type checking a node), pattern
separates the operations from the
structure classes

• Gathers all related operations in Visitor class
• Eases addition of new operations
• Allows collection of state information
• But exposes structure to Visitor class, and
sometimes breaks encapsulation

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 34

Example - Visitor Hierarchy

NodeVisitor
VisitAssignNode(AssignNode)
VisitArrAssignNode(ArrNode)

TypeCheckVisitor
VisitAssignNode(AssignNode)
VisitArrAssignNode(ArrNode)

CodeGenVisitor
VisitAssign(AssignNode)
VisitArrAssignNode(ArrNode)

{abstract}

18

Design Patterns2-10, CS431 F06, BG Ryder/A Rountev 35

Example - Element Hierarchy

Node
Accept(NodeVisitor v)

AssignNode
Accept(NodeVisitor v)

{abstract}

ArrAssignNode
Accept(NodeVisitor v)v.VisitAssignNode(this)

v.VisitArrAssignNode(this)

