
1

Domain Models-6, CS431 F06, BG Ryder/A Rountev 1

Domain Modeling

• A representation of the conceptual
classes in problem domain
– UML (conceptual) class diagrams

• What’s a conceptual class?
– What are its attributes?
– What are description classes?

• What are inter-class associations?
• Implementation issues

Domain Models-6, CS431 F06, BG Ryder/A Rountev 2

Domain Modeling

• Idea: identify the important concepts
in the problem domain
– These concepts later will serve as basis
for the design and the implementation

• Domain modeling (domain analysis)
– We will consider object-oriented domain
modeling in the context of the Unified
Process

2

Domain Models-6, CS431 F06, BG Ryder/A Rountev 3

The Domain Model

• Representation of real-world conceptual
classes in the problem domain
– With class attributes

• Representation of relationships between
conceptual classes
– Associations between classes
– Generalization relationships

• Represented by a UML class diagram
– But it could also be described in text

Domain Models-6, CS431 F06, BG Ryder/A Rountev 4

Models of Domain Concepts

Store
address
name

class Store {
 String address;
 String name;
 addRegister()…
}

Of course, it is not always this simple …

Conceptual class:
No operations; part
of domain model

Implementation
class: created during
design; not part of
domain model

3

Domain Models-6, CS431 F06, BG Ryder/A Rountev 5

A Conceptual Class Diagram
Sales

LineItem
quantity

Item

Sale
date
time

Payment
amount

Store
address
name

Register

Records-sale-of
0..1 1

Contained-in
1..*

1

1
1

Paid-by

1

1

1..*

1

1
*

Houses

Stocked-in

Captured-on

Domain Models-6, CS431 F06, BG Ryder/A Rountev 6

UML Diagrams
• UML is just notation
• Different diagrams mean different things in

different contexts
– Conceptual perspective: description of the

problem domain
– Specification perspective: description of software

abstractions or components
• e.g., no commitment to a particular language

– Implementation perspective: description of Java
classes

• Can have UML class diagrams in each
perspective; used for different purposes

4

Domain Models-6, CS431 F06, BG Ryder/A Rountev 7

Conceptual Classes

• Abstractions of concepts from the
problem domain
– Concepts such as Sale, Register, Item, ..

• UML representation

Sale
date
time

Class name

Attributes
 - only attributes relevant
 to the problem

Domain Models-6, CS431 F06, BG Ryder/A Rountev 8

Building the Domain Model
• Over several iterations during elaboration
• Driven by the use cases

– In each iteration, the use case model is enriched, and
the domain model is extended accordingly

• How to identify conceptual classes?
– Consider common categories (see next slide)
– Identify nouns and noun phrases from the fully

dressed use case
– Use analysis patterns: existing partial domain models

created by experts
• “recipes” for well-known problems and domains (e.g.

accounting, stock market, …)

5

Domain Models-6, CS431 F06, BG Ryder/A Rountev 9

Common Categories
Category Examples
Physical objects Register, Airplane
Places Store, Airport
Transactions Sale, Payment,

Reservation
Roles of people Cashier, Manager
Scheduled Events Meeting, Flight
Records Receipt, Ledger
Specifications and FlightDescription,
 descriptions ProductSpecification
Catalogs of descriptions ProductCatalog

Domain Models-6, CS431 F06, BG Ryder/A Rountev 10

Example: Simplified “Process Sale”

 Customer arrives with goods
 Cashier starts a new sale

Possible conceptual classes: Customer,
Cashier, Item (i.e., goods), Sale

Simplified scenario in Process Sale.
No credit cards, no taxes, no external
accounting system, no external
inventory system, …

6

Domain Models-6, CS431 F06, BG Ryder/A Rountev 11

Simplified “Process Sale”, cont.
 Cashier enters item ID
 System records sale line item and

presents item description, price, and
running total

 At the end, Cashier tells Customer
the total and asks for payment

Possible conceptual classes: SalesLineItem,
ProductSpecification (description + price +
item ID), Payment
 - item ID, description, price, total: probably too
 simple to be classes but will be class attributes

Domain Models-6, CS431 F06, BG Ryder/A Rountev 12

Simplified “Process Sale”, cont.
 Cashier enters amount tendered (cash)
 System presents change due, and

releases cash drawer
 Cashier deposits cash and returns

change
 System presents receipt

Possible conceptual classes:
Register (implied by cash drawer), Receipt
- amount, change: probably too simple

7

Domain Models-6, CS431 F06, BG Ryder/A Rountev 13

Example (cont)
• Want a completely integrated system

– Store: has the items and the registers
– ProductCatalog: stores the product
specifications for all items

– Manager: starts all the registers in the
morning
• Need this for the initial implementation: to be
able to start up the system

• There is no “correct solution”
– Somewhat arbitrary collection of concepts

Domain Models-6, CS431 F06, BG Ryder/A Rountev 14

Possible Initial Domain Model

• Just the conceptual classes
– Attributes and associations later

• For this particular simplified scenario
– Will evolve as more scenarios are explored

Register

Customer Cashier

Sales
LineItem

SaleStore Item

Product
Catalog

PaymentManager

Product
Specification

8

Domain Models-6, CS431 F06, BG Ryder/A Rountev 15

A Common Mistake
• Example

• If in doubt, make it a conceptual
class
– Attributes should be fairly rare in a
domain model and should be relevant to
a use case.

Flight
destination

Flight Airport
nameOR ..?

“If we do not think of some conceptual class X as a number
or text in the real world, X is probably a contextual class, not
an attribute.”, Larman Ch 9, p 146.

Domain Models-6, CS431 F06, BG Ryder/A Rountev 16

Description Classes
• Class Item represents a physical item in a store

– unique serial number, but same ID and price as all
items of same kind (e.g., JVC XV-S40 DVD player)

• Could represent ID and price as attributes of
Item
– Suppose we sell all items of a particular kind; we lose

all price info
– Unnecessary duplication of data

• Need a separate conceptual class that is a
description of items e.g., class ProductSpecification

• An instance of this class represents a
description of information about items
– Even if we sell all JVC XV-S400 DVD players, we

still have information about their price/item ID

9

Domain Models-6, CS431 F06, BG Ryder/A Rountev 17

The Two Alternatives

Item
name
price

serial number
itemID

ProductSpecification
name
price

itemID

Item
serial number

Describes

1

*

Domain Models-6, CS431 F06, BG Ryder/A Rountev 18

When Do We Need This?

• When need description of an item or a service
– Independent of the current existence of any

instances of those items or services
• When description classes would reduce amount

of redundant info in model
– e.g., many instances of the class have the same

values for some attributes
• If the description alone can be in interesting

relationships
– e.g., all JVC XV-S400 DVD players are on sale until

Dec 26th

10

Domain Models-6, CS431 F06, BG Ryder/A Rountev 19

Another Example
Flight
date

number
time

Airport
name

1

*

Flies-to

Flight
date
time

FlightDescription
number

Airport
name

1
*

1

Described-by

*

Describes-
flights-to

Domain Models-6, CS431 F06, BG Ryder/A Rountev 20

Associations in the Domain Model

• Relationship between instances of conceptual
classes
– “connectedness” between instances
– e.g. an order is related to the customer that

placed that order
• Think of it as a mathematical relation

– Typically a binary relation: R ⊆ S1 × S2
– S1 = set of instances of the first class
– S2 = set of instances of the second class

11

Domain Models-6, CS431 F06, BG Ryder/A Rountev 21

Associations in the Domain Model

• Usually, the relation changes with time
– For any pair (o1,o2) ∈ S1 × S2: at some

moments of time the link exists, other times it
does not

• An association typically represents a
relatively permanent relationship
– Often holds for the duration of the entire

lifetime of the instance(s)
– e.g. a sale is permanently associated with the

register that captures it

Domain Models-6, CS431 F06, BG Ryder/A Rountev 22

UML Notation

• Named to enhance understanding of
the relationship

• Multiplicity: what number of instances
can be associated?

• Direction arrow: just helps the reader
– No meaning for the model; often omitted

Sale Register
0..1 1

Captured-on

12

Domain Models-6, CS431 F06, BG Ryder/A Rountev 23

Multiplicity

• One instance of Store can be associated
with zero or more Item instances

• Intuition
– A person may be married to many spouses during

their lifetime, but at any particular moment the
person is married to zero or one other person

– Think of R ⊆ S1 × S2 at a particular moment

*Store Item
1

Stocks

Domain Models-6, CS431 F06, BG Ryder/A Rountev 24

Representing Multiplicity

• Range: x..y
• Common notation for ranges

– x..x -> x
– x..infinity -> x..*
– 0..infinity -> *

• Combination of ranges
– x..y, z..w
– e.g. “2,4” -> number of doors in a car

• Most common multiplicities: *, 1..*, 0..1, 1

13

Domain Models-6, CS431 F06, BG Ryder/A Rountev 25

Interpretation of Multiplicity

• E.g., an item may be sold or
discontinued and then no store stocks it

• Multiplicities may encode relevant
domain constraints
– But: it is not always clear

Store Item
1 *

Stocks

Why 1 and not 0..1?

Domain Models-6, CS431 F06, BG Ryder/A Rountev 26

Typical Associations

• A is a physical/logical part of B
– Wing-Airplane, SalesLineItem-Sale, FlightLeg-

FlightRoute, Finger-Hand
• A is physically/logically contained in B

– Item-Shelf, Passenger-Airplane, Flight-
FlightSchedule

• A is recorded/reported/captured in B
– Sale-Register, Reservation-FlightManifest

• A is a description of B
– ProductSpecification-Item

14

Domain Models-6, CS431 F06, BG Ryder/A Rountev 27

Typical Associations

• A is a member of B
– Cashier-Store, Pilot-Airline

• A uses or manages B
– Cashier-Register, Pilot-Airplane

• A is related to a transaction B
– Customer-Payment, Payment-Sale,
Reservation-Cancellation

• A is owned by B
– Airplane-Airline

Domain Models-6, CS431 F06, BG Ryder/A Rountev 28

Finding Associations

• Consider the typical categories
• Larman, Ch 9 p 155

• Focus on associations that are relevant
with respect to the use cases

• SalesLineItem-Sale
– A sale contains a set of line items

• Permanent “whole-part” relationship
– Needed in the context of the Process Sale
use case (for the total and receipt)

15

Domain Models-6, CS431 F06, BG Ryder/A Rountev 29

Examples

• ProductSpecification-ProductCatalog
– “contained-in” relationship
– Given an item id, the system needs to
look up the item description in the catalog

• Payment-Sale
– Two related transactions: the payment is
with respect to a particular sale

– The payment info is needed to compute
the change due

Domain Models-6, CS431 F06, BG Ryder/A Rountev 30

Examples

Sale SalesLineItem? ?Contains

Product
Catalog

Product
Specification

? ?Contains

Sale Payment? ?Paid-by

16

Domain Models-6, CS431 F06, BG Ryder/A Rountev 31

A Complicated Example
• A store uses a set of external authorization

services for payments

• Each service associates merchant ID with
the store (different for each store)
– The ID is provided by the store as part of the

request for authorization
• A store has different merchant IDs for

each service

Store Authorization
Service

* 1..*Authorizes-via

Domain Models-6, CS431 F06, BG Ryder/A Rountev 32

Stores and Services

• A software system at headquarters:
many stores, many services
– Where should the merchantID be located?

AuthorizationService
name

address
phoneNumber
merchantID

Option 2

Store
name

address
merchantID

Option 1

17

Domain Models-6, CS431 F06, BG Ryder/A Rountev 33

Association Class
• Attribute merchantID is conceptually
related to the association, not to the
individual classes

• Solution: association class
– Represents attributes of the association

Store Authorization
Service

* 1..*Authorizes-via

ServiceContract
merchantID

Domain Models-6, CS431 F06, BG Ryder/A Rountev 34

Association Classes
• An association class is a generalized form of

an association
– Association: set of pairs (o1,o2) ∈ S1 × S2
– Association class: set of pairs (o1,o2) ∈ S1 × S2,

where each pair has some attached info
(attributes)

• The attributes of a pair may change with
time (e.g., the merchant ID may change)

• Association classes may be associated with
other classes (e.g., ternary relation)

18

Domain Models-6, CS431 F06, BG Ryder/A Rountev 35

When to Use Association Classes?

• When an attribute “doesn’t fit” in the
classes participating in an association

• When the lifetime of the attribute
depends on the lifetime of the
association

• Often used with many-to-many
associations

Domain Models-6, CS431 F06, BG Ryder/A Rountev 36

Many-to-Many Association
• A company may employ several persons
• A person may be employed by several
companies
– Many people work two or even three jobs

• Attributes: salary, starting date, …

Company Person* *Employs

Employment
salary

startingDate

19

Domain Models-6, CS431 F06, BG Ryder/A Rountev 37

What is the Difference?

Company

Person* *Employs

Employment
salary

startingDate

Employment
salary

startingDate
Person

Company

* *1 1

Domain Models-6, CS431 F06, BG Ryder/A Rountev 38

Associations and Their Implementation
• In the domain model: an association is
conceptual and does not imply that a
particular implementation will be used
– Some domain-level associations may never
be implemented

• In design and coding: there are
standard mechanisms to implement the
associations

20

Domain Models-6, CS431 F06, BG Ryder/A Rountev 39

Implementation Examples

class Sale {
 // set of references
 // to S.L.I. objects
 private Set items;
}
class SalesLineItem {
}

Sale SalesLineItem1 1..*Contains

class Sale {
}
class SalesLineItem {

private Sale encl_sale;
}

Could even be bi-directional: fields in both classes

Domain Models-6, CS431 F06, BG Ryder/A Rountev 40

Domain Model vs. Implementation
• Key principle: in the domain model,
complex concepts should be related
through associations, not through
attributes

• In design/code, the implementation of
the association may be through
attributes of software classes
– e.g. class Flight may have a field
(attribute) that refers to an instance of
Airport

– But other implementations are also possible

21

Domain Models-6, CS431 F06, BG Ryder/A Rountev 41

Common Types of Attributes

• Primitive types: Number, String, Boolean
• Other simple types: Date, Time, Name,

Address, Color, Phone Number, SSN, UPC
(universal product code = barcode), ZIP,
enumeration types, …

• Some simple attribute types (e.g., SSN)
may need to be represented as separate
conceptual classes

Domain Models-6, CS431 F06, BG Ryder/A Rountev 42

When Attribute Types are Classes?

• The type has separate sections
– e.g. address, phone number, name, item
id

• The type has associated operations
– e.g. parsing and validation for SSN

Store
address: Address

Address
line1: String
line2: String
city: String

state: Enumeration
ZIP: Integer

22

Domain Models-6, CS431 F06, BG Ryder/A Rountev 43

When Attribute Types are Classes?

• Quantity with a unit
– Most quantities have units neede for
conversions: price, velocity, weight, etc.

– Represent different quantities as separate
conceptual classes: Money, Weight, etc.

Payment
amount:Number

Payment
amount:Money

Not useful Better

Domain Models-6, CS431 F06, BG Ryder/A Rountev 44

“Process Sale” Use Case

Sales
LineItem

quantity:Integer

Sale
date:Date
time:Time

Store
address:Address

name:String

Payment
amount:Money

Product
Specification
descr:String
price:Money
id:ItemID

– Store name/address: for receipt
– item ID in Product Spec: for lookups
– Description/price in ProductSpec: for
amount due and for display/receipt

23

Domain Models-6, CS431 F06, BG Ryder/A Rountev 45

Summary

• Conceptual classes
– Special case: specification classes

• Attributes
– Should be simple

• Associations: relationships that are
relevant for the use cases
– Multiplicity at a particular moment
– Association classes

