
1

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 1

High-level Design
 Software Architecture

 What is it?
 Examples of common architectures

 Parnas’ KWIK index example of
information hiding

 Model view controller in high level
layered design

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 2

What is software architecture?
“The architecture of a system is comprehensive
framework that describes its form and
structure -- its components and how they fit
together” Jerrold Grochow, Pressman, Ch 10

 Describes overall shape & structure of
system

 How components are integrated into cohesive
whole

 Their externally visible properties
 Their relationships

 Goal: choose architecture to reduce risks in
SW construction & meet requirements

2

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 3

SW Architectural Styles
 Architecture composed of

 Set of components
 Set of connectors between them

 Communication, co-ordination, co-operation

 Constraints on integration
 Semantic models for understanding the
overall properties from analysis of
component known properties

 Architecture patterns for common
organizational structures

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 4

Pipe & Filter

 Examples:
 UNIX pipes, compilers, signal processors

 Pros:
 Filters oblivious of their neighbors, can be built
in parallel

 System behavior is compositional
 Cons:

 Hard to handle errors
 Often need encoding/decoding of input/output

filter
filterfilter

filter

filter

filter

pipe

pipe

pipe

pipe

pipe

pipe

pipe pipe

pipe

Source: Adapted from Shaw & Garlan 1996, p21-2. See also van Vliet, 1999 Pp266-7 and p279

3

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 5

Event-based Architecture

 Examples:
 GUIs, Breakpoint debuggers

 Pros:
 Anonymous handlers of events
 Supports re-use and evolution, new agents easy
to add

 Cons:
 Components have no control over order of
execution

Source: Adapted from Shaw & Garlan 1996, p23-4. See also van Vliet, 1999 Pp264-5 and p278

broadcast
medium

agent

agent

agent

agentannounce
event

listen for
event

listen for
eventbroadcast

medium

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 6

Data-centric Architecture

 Examples:
 Databases, programming environments

 Pros:
 Promotes integrability (ease of changing/adding
clients)

 Reduces need to replicate complex data

 Cons:
 Blackboard can become a bottleneck

Source: Adapted from Shaw & Garlan 1996, p26-7. See also van Vliet, 1999, p280

blackboard
(shared
data)

agent

agent

agent

agent

agent

agent

4

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 7

Process Control Architecture

 Examples:
 Control systems (e.g., airplanes, spacecraft,
industrial production lines, power stations

 Pros:
 Handles real-time, reactive systems
 Separates control policy from controlled
process

 Cons:
 Hard to specify timing constraints or responses
to disturbances

Source: Adapted from Shaw & Garlan 1996, p27-31.

processcontroller

input variables

controlled
variables

control
parameters

manipulated
variables

se
nso

rs

actuators

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 8

OO Architecture

 Examples:
 Abstract datatypes and object broker systems
(e.g., CORBA)

 Pros:
 Offers data hiding
 Problems expressed as set of interacting agents

 Cons:
 Objects need to know with whom they need to
interact (more later on patterns)

Source: Adapted from Shaw & Garlan 1996, p22-3.

object

object

object

object

object

method
invocation method

invocation

method
invocation method

invocation

5

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 9

Layered Architecture

 Examples:
 Operating systems, Communication protocols, E-
commerce applications

 Pros:
 Supports increasing levels of abstraction during
design

 Supports re-use and enhancement
 Can have standard layer interfaces

Source: Adapted from Shaw & Garlan 1996, p25. See also van Vliet, 1999, p281.

kernalkernel

utilities
application layer

users

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 10

Key Principle: Information Hiding
 Design modules to hide design decisions

 To accommodate possible change
 Module as a responsibility assignment, not a

subprogram

 Problem
 KWIC = Key Word In Context

 Task is to build a contextualized index for the text;
Input is a set of lines of text; Output is the set of all
circular shifts of all lines, in alphabetical order

 Two Designs
 Shared data model
 Data abstraction model

D. Parnas,”On the criteria to be used in decomposing systems into modules”, CACM 1971.

6

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 11

KWIK Index - Shared Data

 Control-flow based design
 Every module “knows” internal representation of
data and addressing mechanism!

 Good for adding another functionality

Master
control

input circular
shift alphabetizer output

Text[]
LineBegin[]

Word index for
shifted titles[]

Alphabetized
index[]

Raw
text

Formatted
output

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 12

KWIK Index - Shared Data

 Possible changes
1. Input format
2. Decision to store index in-core
3. Packing of chars in words
4. Use indexed notation or write out shifts

Master
control

input circular
shift alphabetizer output

Text[]
LineBegin[]

Word index for
shifted titles[]

Alphabetized
index[]

Raw
text

Formatted
output

7

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 13

KWIK Index - Information hiding

 Based on hiding design decisions from
other modules

 Easier to change
 #4 only affects the circular shifter here

getchar

setchar

#line

#w
ords

getchar

#lines

setup

ith

sort

Circular
shifterLine storage Alphabetizer

input
output

Master
controlRaw

text Formatted
output

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 14

Design for Extension & Contraction
 Idea of tailoring SW for specific apps

 “family of programs w common aspects

 Idea (like a VM):
 Identify minimal subset of reqs needed to
be useful

 Use information hiding
 Don’t think of components as processing
steps

 Think about uses (not invokes) relation
 Pgm A uses pgm B if sometimes the correct

functioning of pgm A requires availability of a
correct implementation of pgm B

D. Parnas,” Designing software for ease of extension and contraction”, IEEE Trans on SE, March 1979

8

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 15

Uses Relation
 Think about uses relation

 Level 0 programs use no other
 Level k programs use at least 1 program at
level (k-1) but none at higher level

 Then each level is a testable, usable subset of
the system

 A should be allowed to use B if
 A is simpler thereby
 B is not more complex than A and doesn’t use
A (want acyclic relation)

 There is a useful subset of the system
containing B but not A

 There’s no useful subset of the system
containing A but not B

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 16

Layered Architecture
 Logical architecture

 Large-scale organization of SW classes into
packages (i.e., namespaces), subsystems and
layers

 Layer - coarse-grained grouping of classes
having responsibility for a major aspect of
system

 Strict - layer only calls layer directly below it
 Relaxed - layer can call any layer below it
 Responsibilities of objects in a layer are strongly related

to each other

 UML package diagrams show logical
architecture (LAR Ch 13.1)

 Coupling between packages shown by UML
dependency line, A B

9

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 17

Three Common Layers
 User interface
 Application logic and domain objects

 E.g., Sale
 Focus of OOA/D: Domain layer classes may

represent domain model conceptual classes

 Technical services
 E.g., interfacing with database, error logging

 Layer can be partitioned into horizontal
slices

 E.g., tech services: security & reporting

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 18

Example

Payment
amount

Sale
date
time

1 Pays-for 1

Payment
amount:Money
getBalance(): Money

Sale
date: Date
startTime: Time
getTotal(): Money

1 pays-for 1

Domain
model

Domain layer, Design model

10

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 19

Domain Layer in UP Model

Domain

POS Inventory Tax

Tech services

Persistence Security

partitions

layers

High cohesion

Separation of
concerns

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 20

Model-View Separation Principle
1. Do not connect non-UI objects

directly to UI objects
 Sale object should not refer to a Java Swing

JFrame object

 Do not put application logic in UI
object methods

 UI objects initialize UI elements; receive UI events
(e.g., mouse click); delegate requests for
application logic to non-UI objects

 Messages from UI to domain layer
will be messages in corresponding
sequence diagram

11

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 21

Examplecashier system
makeNewSale()

enterItem(id, quant)
description, total

endSale()

UI

Swing

ProcessSale
Frame

Domain

Register
makenewSale()
enterItem()
…

cashier
makeNewSale()
enterItem()
endSale()

makeNewSale()
enterItem()
endSale()

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 22

Object-Oriented Design
 Objects, with attributes and operations

 Classes define the blueprint for objects
 Objects are instances of classes

 Messages between objects
 Object x sends message to object y to activate

one of m’s operations

 Operation in design -> method in code

 Message in design -> method call in code

12

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 23

“Flavor” of OO Design/Code
 Many small methods, many calls

 Distributed control: processing is split
among many participants

 Distributed vs. centralized control
 Centralized is easier to understand

 In OO: “chasing around the objects,
trying to find the program”

 Distributed is more flexible
 Reduces the impact of change

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 24

Example: Total of a Sale w/ Discount
 Centralized

 Sale asks each SalesLineItem for its
quantity and ProductSpecifiation

 Sale asks each ProductSpecification for the
price

 Sale computes total:=sum(quantity*price)
 Sale asks Customer object for discount info
 Sale calculates discounted price using
discount info

13

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 25

Example, cont.
 Distributed

 Sale asks each SalesLineItem to compute
its subtotal

 Sale computes total := sum(subtotals)
 Sale gives the total to the Customer
object and asks it to compute the
discounted price

 More delegation of responsibility, less
coupling

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 26

Core Principles of OO Design
 Identify the responsibilities that are

needed to satisfy the requirements

 Assign these responsibilities to objects
 Add the appropriate operations (i.e., methods)

 Design the interactions among objects
 Add the appropriate messages (i.e., calls)

 :Sale
t:=getTotal()

 :SalesLineItem

1*: st:=getSubtotal()

*
 :ProductSpecification

1.1: p:=getPrice()

14

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 27

UP Artifacts

XDomain Model

XXXImplem. Model
XXDesign Model

XXSupplem. Spec
XXUse-Case Model

TransConstElabIncepArtifact

Requirements analysis: Use-Case Model +
 Supplementary Specification
Domain analysis: Domain Model
Design: Design Model
Coding: Implementation Model

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 28

Relationships Among Models

Use Case Model

Domain Model

Design Model

Code

15

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 29

Design in the Unified Process
 At the end of elaboration

 Almost all requirements are clarified
 High-risk design aspects are stabilized

 Construction: iterative design and coding
for the remaining requirements

 Interaction diagrams: sequence
diagrams, communication diagrams

 Design class diagrams

