
1

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 1

High-level Design
 Software Architecture

 What is it?
 Examples of common architectures

 Parnas’ KWIK index example of
information hiding

 Model view controller in high level
layered design

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 2

What is software architecture?
“The architecture of a system is comprehensive
framework that describes its form and
structure -- its components and how they fit
together” Jerrold Grochow, Pressman, Ch 10

 Describes overall shape & structure of
system

 How components are integrated into cohesive
whole

 Their externally visible properties
 Their relationships

 Goal: choose architecture to reduce risks in
SW construction & meet requirements

2

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 3

SW Architectural Styles
 Architecture composed of

 Set of components
 Set of connectors between them

 Communication, co-ordination, co-operation

 Constraints on integration
 Semantic models for understanding the
overall properties from analysis of
component known properties

 Architecture patterns for common
organizational structures

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 4

Pipe & Filter

 Examples:
 UNIX pipes, compilers, signal processors

 Pros:
 Filters oblivious of their neighbors, can be built
in parallel

 System behavior is compositional
 Cons:

 Hard to handle errors
 Often need encoding/decoding of input/output

filter
filterfilter

filter

filter

filter

pipe

pipe

pipe

pipe

pipe

pipe

pipe pipe

pipe

Source: Adapted from Shaw & Garlan 1996, p21-2. See also van Vliet, 1999 Pp266-7 and p279

3

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 5

Event-based Architecture

 Examples:
 GUIs, Breakpoint debuggers

 Pros:
 Anonymous handlers of events
 Supports re-use and evolution, new agents easy
to add

 Cons:
 Components have no control over order of
execution

Source: Adapted from Shaw & Garlan 1996, p23-4. See also van Vliet, 1999 Pp264-5 and p278

broadcast
medium

agent

agent

agent

agentannounce
event

listen for
event

listen for
eventbroadcast

medium

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 6

Data-centric Architecture

 Examples:
 Databases, programming environments

 Pros:
 Promotes integrability (ease of changing/adding
clients)

 Reduces need to replicate complex data

 Cons:
 Blackboard can become a bottleneck

Source: Adapted from Shaw & Garlan 1996, p26-7. See also van Vliet, 1999, p280

blackboard
(shared
data)

agent

agent

agent

agent

agent

agent

4

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 7

Process Control Architecture

 Examples:
 Control systems (e.g., airplanes, spacecraft,
industrial production lines, power stations

 Pros:
 Handles real-time, reactive systems
 Separates control policy from controlled
process

 Cons:
 Hard to specify timing constraints or responses
to disturbances

Source: Adapted from Shaw & Garlan 1996, p27-31.

processcontroller

input variables

controlled
variables

control
parameters

manipulated
variables

se
nso

rs

actuators

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 8

OO Architecture

 Examples:
 Abstract datatypes and object broker systems
(e.g., CORBA)

 Pros:
 Offers data hiding
 Problems expressed as set of interacting agents

 Cons:
 Objects need to know with whom they need to
interact (more later on patterns)

Source: Adapted from Shaw & Garlan 1996, p22-3.

object

object

object

object

object

method
invocation method

invocation

method
invocation method

invocation

5

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 9

Layered Architecture

 Examples:
 Operating systems, Communication protocols, E-
commerce applications

 Pros:
 Supports increasing levels of abstraction during
design

 Supports re-use and enhancement
 Can have standard layer interfaces

Source: Adapted from Shaw & Garlan 1996, p25. See also van Vliet, 1999, p281.

kernalkernel

utilities
application layer

users

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 10

Key Principle: Information Hiding
 Design modules to hide design decisions

 To accommodate possible change
 Module as a responsibility assignment, not a

subprogram

 Problem
 KWIC = Key Word In Context

 Task is to build a contextualized index for the text;
Input is a set of lines of text; Output is the set of all
circular shifts of all lines, in alphabetical order

 Two Designs
 Shared data model
 Data abstraction model

D. Parnas,”On the criteria to be used in decomposing systems into modules”, CACM 1971.

6

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 11

KWIK Index - Shared Data

 Control-flow based design
 Every module “knows” internal representation of
data and addressing mechanism!

 Good for adding another functionality

Master
control

input circular
shift alphabetizer output

Text[]
LineBegin[]

Word index for
shifted titles[]

Alphabetized
index[]

Raw
text

Formatted
output

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 12

KWIK Index - Shared Data

 Possible changes
1. Input format
2. Decision to store index in-core
3. Packing of chars in words
4. Use indexed notation or write out shifts

Master
control

input circular
shift alphabetizer output

Text[]
LineBegin[]

Word index for
shifted titles[]

Alphabetized
index[]

Raw
text

Formatted
output

7

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 13

KWIK Index - Information hiding

 Based on hiding design decisions from
other modules

 Easier to change
 #4 only affects the circular shifter here

getchar

setchar

#line

#w
ords

getchar

#lines

setup

ith

sort

Circular
shifterLine storage Alphabetizer

input
output

Master
controlRaw

text Formatted
output

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 14

Design for Extension & Contraction
 Idea of tailoring SW for specific apps

 “family of programs w common aspects

 Idea (like a VM):
 Identify minimal subset of reqs needed to
be useful

 Use information hiding
 Don’t think of components as processing
steps

 Think about uses (not invokes) relation
 Pgm A uses pgm B if sometimes the correct

functioning of pgm A requires availability of a
correct implementation of pgm B

D. Parnas,” Designing software for ease of extension and contraction”, IEEE Trans on SE, March 1979

8

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 15

Uses Relation
 Think about uses relation

 Level 0 programs use no other
 Level k programs use at least 1 program at
level (k-1) but none at higher level

 Then each level is a testable, usable subset of
the system

 A should be allowed to use B if
 A is simpler thereby
 B is not more complex than A and doesn’t use
A (want acyclic relation)

 There is a useful subset of the system
containing B but not A

 There’s no useful subset of the system
containing A but not B

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 16

Layered Architecture
 Logical architecture

 Large-scale organization of SW classes into
packages (i.e., namespaces), subsystems and
layers

 Layer - coarse-grained grouping of classes
having responsibility for a major aspect of
system

 Strict - layer only calls layer directly below it
 Relaxed - layer can call any layer below it
 Responsibilities of objects in a layer are strongly related

to each other

 UML package diagrams show logical
architecture (LAR Ch 13.1)

 Coupling between packages shown by UML
dependency line, A B

9

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 17

Three Common Layers
 User interface
 Application logic and domain objects

 E.g., Sale
 Focus of OOA/D: Domain layer classes may

represent domain model conceptual classes

 Technical services
 E.g., interfacing with database, error logging

 Layer can be partitioned into horizontal
slices

 E.g., tech services: security & reporting

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 18

Example

Payment
amount

Sale
date
time

1 Pays-for 1

Payment
amount:Money
getBalance(): Money

Sale
date: Date
startTime: Time
getTotal(): Money

1 pays-for 1

Domain
model

Domain layer, Design model

10

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 19

Domain Layer in UP Model

Domain

POS Inventory Tax

Tech services

Persistence Security

partitions

layers

High cohesion

Separation of
concerns

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 20

Model-View Separation Principle
1. Do not connect non-UI objects

directly to UI objects
 Sale object should not refer to a Java Swing

JFrame object

 Do not put application logic in UI
object methods

 UI objects initialize UI elements; receive UI events
(e.g., mouse click); delegate requests for
application logic to non-UI objects

 Messages from UI to domain layer
will be messages in corresponding
sequence diagram

11

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 21

Examplecashier system
makeNewSale()

enterItem(id, quant)
description, total

endSale()

UI

Swing

ProcessSale
Frame

Domain

Register
makenewSale()
enterItem()
…

cashier
makeNewSale()
enterItem()
endSale()

makeNewSale()
enterItem()
endSale()

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 22

Object-Oriented Design
 Objects, with attributes and operations

 Classes define the blueprint for objects
 Objects are instances of classes

 Messages between objects
 Object x sends message to object y to activate

one of m’s operations

 Operation in design -> method in code

 Message in design -> method call in code

12

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 23

“Flavor” of OO Design/Code
 Many small methods, many calls

 Distributed control: processing is split
among many participants

 Distributed vs. centralized control
 Centralized is easier to understand

 In OO: “chasing around the objects,
trying to find the program”

 Distributed is more flexible
 Reduces the impact of change

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 24

Example: Total of a Sale w/ Discount
 Centralized

 Sale asks each SalesLineItem for its
quantity and ProductSpecifiation

 Sale asks each ProductSpecification for the
price

 Sale computes total:=sum(quantity*price)
 Sale asks Customer object for discount info
 Sale calculates discounted price using
discount info

13

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 25

Example, cont.
 Distributed

 Sale asks each SalesLineItem to compute
its subtotal

 Sale computes total := sum(subtotals)
 Sale gives the total to the Customer
object and asks it to compute the
discounted price

 More delegation of responsibility, less
coupling

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 26

Core Principles of OO Design
 Identify the responsibilities that are

needed to satisfy the requirements

 Assign these responsibilities to objects
 Add the appropriate operations (i.e., methods)

 Design the interactions among objects
 Add the appropriate messages (i.e., calls)

 :Sale
t:=getTotal()

 :SalesLineItem

1*: st:=getSubtotal()

*
 :ProductSpecification

1.1: p:=getPrice()

14

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 27

UP Artifacts

XDomain Model

XXXImplem. Model
XXDesign Model

XXSupplem. Spec
XXUse-Case Model

TransConstElabIncepArtifact

Requirements analysis: Use-Case Model +
 Supplementary Specification
Domain analysis: Domain Model
Design: Design Model
Coding: Implementation Model

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 28

Relationships Among Models

Use Case Model

Domain Model

Design Model

Code

15

High-level Design, CS431 F06, B G Ryder/A. Borgida/A Rountev 29

Design in the Unified Process
 At the end of elaboration

 Almost all requirements are clarified
 High-risk design aspects are stabilized

 Construction: iterative design and coding
for the remaining requirements

 Interaction diagrams: sequence
diagrams, communication diagrams

 Design class diagrams

