High-level Design

- Software Architecture
- What is it?
- Examples of common architectures

- Parnas’ KWIK index example of
information hiding

- Model view controller in high level
layered design

High-level Design, C5431 F06, B 6 Ryder/A. Borgida/A Rountev

What is software architecture?

"The architecture of a system is comprehensive
framework that describes its form and
structure -- its components and how they fit
together” Jerrold Grochow, Pressman, Ch 10

- Describes overall shape & structure of
system

- How components are integrated into cohesive
whole

- Their externally visible properties
« Their relationships

- Goal: choose architecture to reduce risks in
SW construction & meet requirements

High-level Design, C5431 FO6, B 6 Ryder/A. Borgida/A Rountev

SW Architectural Styles

- Architecture composed of
- Set of components

- Set of connectors between them
Communication, co-ordination, co-operation

- Constraints on integration

- Semantic models for understanding the
overall properties from analysis of
component known properties

- Architecture patterns for common
organizational structures

High-level Design, C5431 F06, B 6 Ryder/A. Borgida/A Rountev 3

Source: Adapted from Shaw & Garlan 1996, p21-2. See also van Vliet, 1999 Pp266-7 and p279

Pipe & Filter
e pipe pipe

pipe]

- Examples:
- UNIX pipes, compilers, signal processors
- Pros:
- Filters oblivious of their neighbors, can be built
in parallel
- System behavior is compositional
- Cons:

- Hard to handle errors
- Often need encoding/decoding of input/output

High-level Design, C5431 FO6, B 6 Ryder/A. Borgida/A Rountev 4

Source: Adapted from Shaw & Garlan 1996, p23-4. See also van Vliet, 1999 Pp264-5 and p278

Event-based Architecture

broadcast
medium

- Examples:
- 6UIs, Breakpoint debuggers

- Pros:
- Anonymous handlers of events

- Supports re-use and evolution, new agents easy
to add

- Cons:

- Components have no control over order of

execution
High-level Design, CS431 FO06, B 6 Ryder/A. Borgida/A Rountev 5

Source: Adapted from Shaw & Garlan 1996, p26-7. See also van Vliet, 1999, p280

Data-centric Architecture

blackboard
(shared
data)

4—![agent
- Examples:

- Databases, programming environments

agent

- Pros:

- Promotes integrability (ease of changing/adding
clients)

- Reduces need to replicate complex data

- Cons:
High-level Design, Bdackboard.can-become. a bottleneck 6

Source: Adapted from Shaw & Garlan 1996, p27-31.

Process Control Architecture

%
input variables r,°“
— &
control panipulated
paraméters variables R
4 controlled
\ .
- Examp| es: actuators variables

- Control systems (e.g., airplanes, spacecraft,
industrial production lines, power stations

- Pros:
- Handles real-time, reactive systems

- Separates control policy from controlled
process

- Cons:

- Hard to specify timing constraints or responses
to disturbances

High-level Design, CS431 FO06, B 6 Ryder/A. Borgida/A Rountev 7

Source: Adapted from Shaw & Garlan 1996, p22-3.

OO Architecture

method
'nvocatio
] 5N
- [

method
NMavocation

method
invocatio

- Examples:

- Abstract datatypes and object broker systems
(e.g. CORBAY TP object Droker sy

- Pros:

- Offers data hiding
- Problems expressed as set of interacting agents

- Cons:

- Objects need to know with whom they need to
interact (more later on patterns)
High-level Design, CS431 F06, B 6 Ryder/A. Borgida/A Rountev 8

Source: Adapted from Shaw & Garlan 1996, p25. See also van Vliet, 1999, p281.

Layered Architecture

users

- Examples:

- Operating systems, Communication protocols, E-
commerce applications

- Pros:

- Supports increasing levels of abstraction during
design

- Supports re-use and enhancement
- Can have standard layer interfaces

High-level Design, C5431 F06, B 6 Ryder/A. Borgida/A Rountev 9

D. Parnas,”On the criteria to be used in decomposing systems into modules”, CACM 1971.

Key Principle: Information Hiding
- Design modules to hide design decisions

To accommodate possible change

Module as a responsibility assignment, not a
subprogram

- Problem
- KWIC = Key Word In Context

- Task is to build a contextualized index for the text;
Input is a set of lines of text; Output is the set of all
circular shifts of all lines, in alphabetical order

- Two Designs
- Shared data model
- Data abstraction model

High-level Design, C5431 FO6, B 6 Ryder/A. Borgida/A Rountev 10

KWIK Index - Shared Data

Master
control

Formatted

Raw tout
text - outpu
=> input circular alphabetizer output :>
= e e v
AL AR
Text[] WWord index fol Alphabetized
LineBegin[] Bhifted titles] | index|]

- Control-flow based design

- Every module “knows” internal representation of
data and addressing mechanism!

- 6ood for adding another functionality

High-level Design, CS431 FO06, B 6 Ryder/A. Borgida/A Rountev 1

KWIK Index - Shared Data

Master
control

Formatted

Raw tout
text x outpu
|:> input TR alphabetizer output :>
e i S
NS “oal
Text[] WWord index fol Alphabetized
LineBegin|[] Bhifted titles] | index|]

- Possible changes
1. Input format
2. Decision to store index in-core
3. Packing of chars in words
4. Use indexed notation or write out shifts

High-level Design, CS431 F06, B 6 Ryder/A. Borgida/A Rountev 12

KWIK Index - Information hiding

Master

|:> input |[&— | \]
Raw i Eanie] output —t

" W,

Circular
shifter

Formatted
output

Line storage

- Based on hiding design decisions from
other modules

- Easier to change
#4 only affects the circular shifter here

High-level Design, C5431 F06, B 6 Ryder/A. Borgida/A Rountev 13

D. Parnas,” Designing software for ease of extension and contraction”, IEEE Trans on SE, March 1979

Design for Extension & Contraction

- Idea of tailoring SW for specific apps
- "family of programs w common aspects

- Idea (like a VM):

- Identify minimal subset of reqs needed to
be useful

- Use information hiding
- Don't think of components as processing
steps

- Think about uses (not invokes) relation

Pgm A uses pgm B if sometimes the correct
functioning of pgm A requires availability of a
correct implementation of pgm B

High-level Design, C5431 FO6, B 6 Ryder/A. Borgida/A Rountev 14

Uses Relation

- Think about uses relation
- Level O programs use no other
- Level k programs use at least 1 program at

level (k-1) but none at higher level

- Then each level is a testable, usable subset of

- A sh

the system

ould be allowed to use B if
A is simpler thereby

- B is not more complex than A and doesn't use

A (want acyclic relation)

- There is a useful subset of the system

containing B but not A

- There's no useful subset of the system

containing A but not B

High-level Design, C5431 F06, B 6 Ryder/A. Borgida/A Rountev 15

Layered Architecture

- Logical architecture
- Large-scale organization of SW classes into

ackages (i.e., namespaces), subsystems and
ayers

- Layer - coarse-qrained grouping of classes
i

having responsib

ity for a major aspect of

system

Strict - layer only calls layer directly below it
Relaxed - layer can call any layer below it

Responsibilities of objects in a layer are strongly related
to each other

- UML package diagrams show logical
architecture (LAR ch 13.1)

Coupling between packages shown by UML
dependency line, A- - - - - > B

High-level Design, C5431 FO6, B 6 Ryder/A. Borgida/A Rountev 16

Three Common Layers

User interface

E.g., Sale

Focus of OOA/D: Domain layer classes may
represent domain model conceptual classes

Technical services

Application logic and domain objects

E.g., interfacing with database, error logging

slices

Layer can be partitioned into horizontal

E.g., tech services: security & reporting

High-level Design, CS431 FO06, B 6 Ryder/A. Borgida/A Rountev

Example .
Domain
Payment | 1 Pays-for 1 |Sale model
amount date
time
1 pays-for 1 Sale
Payment) "|date: Date

amount:Money

getBalance(): Money

startTime: Time

getTotal(): Money

Domain layer, Design model

High-level Design, CS431 F06, B 6 Ryder/A. Borgida/A Rountev

Domain Layer in UP Model

POS| |Inventory Tax

layers

concerns

Persistence| |Security

v

A

partitions

High-level Design, CS431 FO06, B 6 Ryder/A. Borgida/A Rountev

Domain High cohesion

Tech services Separation of

Model-View Separation Principle

1. Do not connect non-UI objects
directly to UI objects

Sale object should not refer to a Java Swing
JFrame object

- Do not put application logic in UT
object methods

UI objects initialize UI elements: receive UI events

(e.g., mouse click); delegate requests for
application logic to non-UI objects

- Messages from UI to domain layer
will be messages in corresponding
sequence diagram

High-level Design, CS431 F06, B 6 Ryder/A. Borgida/A Rountev

20

10

cashier system
|_makeNewSale() |
enterItem(id, quant)
__description, total

endSale()

Example

Ul

cashier

l makeNewSale()
enterItem()

Swing

endSate()

ProcessSale
Frame

Domain

l makeNewSale()
enterItem()

High-level Design, CS431 F06, B 6 Ryder/A. Borgida/A Rountev

endSale()

Register

makenewSale()
enterItem()

21

Object-Oriented Design

Objects, with attributes and operations

Classes define the blueprint for objects

- Objects are instances of classes

Messages between objects

- Object x sends message to object y to activate
one of m's operations

High-level Design, CS431 F06, B 6 Ryder/A. Borgida/A Rountev

Operation in design -> method in code

Message in design -> method call in code

22

11

“"Flavor” of OO Design/Code
- Many small methods, many calls

- Distributed control: processing is split
among many participants

- Distributed vs. centralized control
- Centralized is easier to understand
- In OO: “chasing around the objects,
trying to find the program”
- Distributed is more flexible
- Reduces the impact of change

High-level Design, C5431 F06, B 6 Ryder/A. Borgida/A Rountev 23

Example: Total of a Sale w/ Discount

- Centralized

- Sale asks each SalesLineItem for its
quantity and ProductSpecifiation

- Sale asks each ProductSpecification for the
price

- Sale computes total:=sum(quantity*price)

- Sale asks Customer object for discount info

- Sale calculates discounted price using
discount info

High-level Design, C5431 FO6, B 6 Ryder/A. Borgida/A Rountev 24

12

Example, cont.

- Distributed

- Sale asks each SalesLineItem to compute
its subtotal
- Sale computes total := sum(subtotals)

- Sale gives the total to the Customer
object and asks it to compute the
discounted price

- More delegation of responsibility, less
coupling

High-level Design, C5431 F06, B 6 Ryder/A. Borgida/A Rountev 25

Core Principles of OO Design

Identify the responsibilities that are
needed to satisfy the requirements

Assign these responsibilities to objects
Add the appropriate operations (i.e., methods)

Design the interactions among objects
Add the appropriate messages (i.e., calls)

'r:=ge1:':'ral() 1*: st:=getSubtotal() |
:Sale :SalesLineItem ’
_> *
:ProductSpecificatio +

1.1: p:=getPrice()
High-level Design, C5431 FO6, B 6 Ryder/A. Borgida/A Rountev 26

13

UP Artifacts

Artifact Incep | Elab | Const | Trans
Use-Case Model X X
Supplem. Spec X X
Domain Model X
Design Model X X
Implem. Model X X X

Requirements analysis: Use-Case Model +
Supplementary Specification
Domain analysis: Domain Model
Design: Design Model
eggjﬂgeiignIQPIemem‘aﬁon Model

1 FO6, B G Ryder/A. Borgida/A Rountev

27

Relationships Among Models

Use Case Model

l

Domain Model

l

Design Model

l

Code

High-level Design, CS431 F06, B 6 Ryder/A. Borgida/A Rountev 28

14

Design in the Unified Process

At the end of elaboration

- Almost all requirements are clarified
- High-risk design aspects are stabilized

Construction: iterative design and coding
for the remaining requirements

Interaction diagrams: sequence
diagrams, communication diagrams

Design class diagrams

High-level Design, CS431 FO06, B 6 Ryder/A. Borgida/A Rountev 29

15

