
1

CS431F06, BG Ryder/A Routev 1

Introduction

• Software in our lives
• What is software engineering?
• Software engineering - precis of a short

history by Barry Boehm, ICSE’06 Keynote
speaker

• Software disasters
– Ariane 5 rocket

• Software quality
• Software myths

CS431F06, BG Ryder/A Routev 2

Software is ubiquitous
• Systems software

– OS, compiler, loader
• Business software

– Payroll, accounting
• Scientific and engineering software

– Computer-aided design, simulation, weather
prediction, …

• PC software
– Spreadsheets, word processing, games, …

• Embedded software
– Cars, microwave ovens, cable boxes, light

switches, “smart dust”, …

2

CS431F06, BG Ryder/A Routev 3

Software is ubiquitous

• Internet software
– B2C: business-to-customer (e.g.
amazon.com)

– B2B: business-to-business
• Main target for web services technology

– B2E: business-to-employee
• Intra-company access
• For mobile and remote employees

CS431F06, BG Ryder/A Routev 4

Software
Software is:

– Executable programs
– Data associated with these programs
– Documents: user requirements, design
documents, user/programmer guides, etc.

• Software plays a key role
– Produces, manages, and presents
information

– Information society
• Next step after industrial society

3

CS431F06, BG Ryder/A Routev 5

Software Crisis?
• People that design and build software
have to deal with many problems

• Software crisis for the last 30 years?
– In reality, things are not that bad

• Many more successes than failures
• But problems are persistent

• The SE field is still immature
– e.g., compare with civil engineering, etc.

CS431F06, BG Ryder/A Routev 6

Definition of Software Engineering

IEEE Standard 610.12
The application of a systematic,

disciplined, quantifiable approach to
the development, operation, and
maintenance of software; that is, the
application of engineering to software,
and

The study of approaches as in (1).
That’s a mouthful, isn’t it?

4

CS431F06, BG Ryder/A Routev 7

Definition of Software Engineering
Based on Webster’s definition of “engineering”

• The application of science and mathematics
by which the properties of software are
made useful to people

• Includes computer science and the sciences
of making things useful to people
– Behavioral sciences, economics, management

sciences

Cf Barry Boehm, ICSE06 Keynote

CS431F06, BG Ryder/A Routev 8

Definition of Software Engineering
Pressman’s book:

A discipline that encompasses
• process of software development
• methods for software analysis, design,

construction, testing, and maintenance
• tools that support the process and the

methods

5

CS431F06, BG Ryder/A Routev 9

Process, Methods, Tools

• Various tasks required to build software
– e.g. design, testing, etc. (more later)

• SE process: the organization and
management of these tasks

• SE methods: ways to perform the tasks
– e.g. methods for software testing, for designing classes

• SE tools: assist in performing the tasks
– e.g. design tools, IDEs like Eclipse
– UML tools: Rational Rose,
– Testing tools like JUnit, JCover

CS431F06, BG Ryder/A Routev 10

Importance of Historical Perspective

• Santayana half-truth:
– “Those who cannot remember the past are

condemned to repeat it”
• Don’t remember failures?

– Likely to repeat them
• Don’t remember successes?

– Not likely to repeat them

Cf Barry Boehm, ICSE06 Keynote

6

CS431F06, BG Ryder/A Routev 11

History of SW Development

• 1950’s: engineer software like hardware
– Applications: airplanes, bridges, circuits
– Economics: computer time more valuable
than people time

– Boehm supervisor, 1955: “We’re paying $600/hour for
that computer, and $2/hour for you, and I want you
to act accordingly.”

Cf Barry Boehm, ICSE06 Keynote

CS431F06, BG Ryder/A Routev 12

History of SW Development
• 1960’s: software is NOT LIKE hardware

– Properties:
• Invisible, complex, had to be executed by computers,

hard to change, doesn’t wear out (or does it?),
unconstrained by physical laws of nature

– Demand for programmers exceeded supply
• Cowboy programmers as heros; hacker culture;

– Code and fix process
– Better tools: compilers, operating systems,

utilities
– Departments of Computer Science formed
– Successes: Apollo, BofA check processing, ESS
– Problems: failure of most large systems,

unmaintainable code; undiagnosible systems

Cf Barry Boehm, ICSE06 Keynote

7

CS431F06, BG Ryder/A Routev 13

History of SW Development

• 1970’s Formal approaches developed
– Structured programming, elimination of goto’s
– Waterfall model of development
– Developed notions of requirements and design

phases of SW creation
– Problems with formal methods

• Successful for small, critical programs
• Proofs show presence of defects, not correctness

– Lack of expert programmer community

Cf Barry Boehm, ICSE06 Keynote

CS431F06, BG Ryder/A Routev 14

Large-Organization HW/SW Cost Trends
(1973)

 100

80

60

40

20

0

1955 1970 1985

Hardware

Software

Year

% of

total cost

Cf Barry Boehm, ICSE06 Keynote

8

CS431F06, BG Ryder/A Routev 15

History of SW Development

• 1980’s Synthesis, productivity, reuse,
objects
– Major SW productivity enhancers

– Working faster: tools and environments
– Working smarter: processes and methods
– Work avoidance: reuse, simplicity; objects
– Technology silver bullets: AI, Do what I mean,

programming by example

– Develop processes by which to produce software,
standards and conformance

– Reuse: OO Libraries (Smalltalk, Eiffel, C++)

Cf Barry Boehm, ICSE06 Keynote

CS431F06, BG Ryder/A Routev 16

“No Silver Bullet”, Fred Brooks
• Automated solutions are good for “accidental”

software problems
– Simple inconsistencies, noncompliance, inferences

• They do not do well on “essential” software
problems
– Changeability: adapting themselves to unanticipated

changes
– Conformity: working out everything the computer

needs to “know”
• Devoid of intuition, common-sense reasoning

– Complexity: integrating multiple already-complex
programs

– Invisibility: communicating their likely behavior to
humans

• Closest thing to silver bullet: great designers
Cf Barry Boehm, ICSE06 Keynote

IEEE Computer, 1987

9

CS431F06, BG Ryder/A Routev 17

History of SW Development

• 1990’s predictability through modeling
(heavyweight, but scalable)

• Rapidity of change - agile development
(lightweight and not scalable)

• Other trends, ‘90s-early 00’s: Y2K,
reverse engineering, COTS, Open
Source SW, Legacy codes
– Software as the primary competitive
discriminator
• 80% of aircraft functionality

Cf Barry Boehm, ICSE06 Keynote

CS431F06, BG Ryder/A Routev 18

Existing SW Problems
• Software is too expensive
• Software takes too long to build
• Software quality is low
• Software is too complex to support
and maintain

• Software does not age gracefully
• Not enough highly-qualified people to
design and build software

10

CS431F06, BG Ryder/A Routev 19

Software Cost Overruns -
Consequences

• Many projects are cancelled
– People may get fired or may quit

• Product features are not implemented
– Bad quality: not enough money to get it right, but more

expensive in the long run

• Loss of revenue and market share
– Both for the vendor and for the client
– E.g., baggage system at Denver airport

• Cost: $1 million per day

• Projects may become obsolete
– Technology changes rapidly
– Competing products already on the market

CS431F06, BG Ryder/A Routev 20

An Overall Survey of Experiences

• Studies of IT projects by the
Standish Group (1995 and 1998)
– 350+ IT managers, 8000+ applications

• What percentage of projects were
– cancelled before being completed?
– over budget and/or late?
– completed on time and on budget?

• What was the cost/time overrun?

11

CS431F06, BG Ryder/A Routev 21

Success Rate

• Category 1: on time and on budget,
with all initially specified features

• Category 2: over budget or over time,
with fewer features than specified

• Category 3: cancelled

CS431F06, BG Ryder/A Routev 22

Overruns and Deficiencies

• Cost and time overruns
– Averages for category 2 and category 3

• Cost overruns: 189% of original estimate
• Time overruns: 222% of original estimate
• Feature deficiencies: only 61% of the

originally specified features were
implemented
– Average for category 2

12

CS431F06, BG Ryder/A Routev 23

Some Reasons for Failure

• Lack of user involvement
• Incomplete requirements and specs
• Changing requirements and specs
• Lack of executive support (politics)
• Lack of planning and management
• Inadequate resources and time

– Death-march projects
• Technological incompetence

CS431F06, BG Ryder/A Routev 24

Why Software Projects Fail
- Average overrun: 89.9% on cost, 121% on schedule, with 61% of content

Cf Barry Boehm, ICSE06 Keynote

13

CS431F06, BG Ryder/A Routev 25

Standish Survey Summary

• It is common for projects to fail
– A third of the projects from this survey
– Estimated cost for 1995: $81 billion

• It is common for projects to go over
budget/time, and to have fewer
features
– Half of the projects in this survey
– Time/cost is double of initial estimates
– Estimated cost for 1995: $56 billion

• Similar results from the 1998 survey

CS431F06, BG Ryder/A Routev 26

Software Quality
• Software defects result in failures

– Example 1: Windows crashes while you
play a game at home

– Example 2: The software that controls a
nuclear reactor crashes

• Direct loss of life and money
– Millions of dollars

• Indirect loss: missed opportunities
– e.g. online purchases are down for a day

• Loss of credibility, bad publicity

14

CS431F06, BG Ryder/A Routev 27

Ariane 5

CS431F06, BG Ryder/A Routev 28

Example: Ariane 5
• Ariane 5 rocket
• Built by the European Space Agency
• First launch: June 1996
• Crashed 40 seconds after launch
• Cost: $500 million for rocket and
contents; $7 billion for development

• No people on board
• Problem: software failure

http://www.ima.umn.edu/~arnold/disasters/ariane.html
http://www.around.com/ariane.html

15

CS431F06, BG Ryder/A Routev 29

What Happened?
• Overflow when velocity was converted
from 64-bit integer to 16-bit integer

• The exception was not caught
– Inertial Reference System failed

• Backup system failed for the same reason
– Rocket went off course
– Self-destruct module (correctly) activated

• The code was OK for Ariane 4
– Same software, different environment

• Code was for earlier phase in flight but was
left active

CS431F06, BG Ryder/A Routev 30

Software Myths
• “If we get behind schedule, we can
just add more people and catch up”

• Fact: Adding people to a late project
makes it even later
– Brooks: Adding more people may make the
project even later
• The people working now have also to teach the
new people

16

CS431F06, BG Ryder/A Routev 31

Software Myths
• ‘Mythical man-month’: “men and months are
interchangeable only when a task can be
partitioned among many workers with no
communication among them” [Brooks,’75]

• Cost of pairwise communication that may be
needed between n workers is n(n-1)/2 for co-
ordinated tasks.

• “A general statement of objectives is
enough to start programming”

• Fact: Incomplete requirements are a
major cause for project failures

CS431F06, BG Ryder/A Routev 32

Software Myths

• “Changes in requirements are easy to
deal with because software is flexible”

• Fact: Changes are hard and expensive
– Especially during coding and after
software deployment

Definition Development After release

1
1.5-6

60-100

17

CS431F06, BG Ryder/A Routev 33

Software Myths
• “Once we get the program running, we are

done”
• Fact: Most effort (60-80%) comes after the

software is delivered for the first time
– Bug fixes, feature enhancements, etc.

• “Until the program is running, I cannot assess
quality”

• Fact: software reviews can be applied as soon
as code is written and are very effective;
pair programming techniques as well.

CS431F06, BG Ryder/A Routev 34

Software Myths

• “The only product is the running program”
• Fact: Need the entire configuration

– Documentation of system requirements, design,
programming, and usage

• “SE will slow us down by requiring
unnecessary documentation”

• Fact: SE is about quality; Brooks
recommends time division of: 1/3 planning;
1/6 coding; 1/4 component test and early
system test; 1/4 system test

18

CS431F06, BG Ryder/A Routev 35

Software Engineering

• Software is complex, expensive, late,
low-quality, hard to maintain

• Goal: approach these problems using
software engineering
– Engineering disciplines: civil engineering,
etc.

– Body of knowledge, established practices,
professional education, certification, etc.

• Key problem: the field is very young
– The term “SE” was introduced in 1968

