
1

Process-3, CS431F06, BG Ryder/A Rountev 1

Software Process

• What is SW process?
– Definition, Development, Support phases

• Process models:
– Waterfall
– Prototyping
– Spiral,
– Incremental & iterative (best practices)

• UP process model
• What is it? How does it work?

Process-3, CS431F06, BG Ryder/A Rountev 2

Software Process
• For a single project

• Planning (time, resources, assignments)
• Tracking and measuring progress

• Across multiple projects
• Organizational planning (time, resources, etc.)
• Hiring, training, tool acquisition, etc.
• Process assessment and improvement

• For software engineering in general
• Helps organize SE around ‘best practices’

– How to build software?
• SW Process is a research area of SE

2

Process-3, CS431F06, BG Ryder/A Rountev 3

Elements of the Process

Term Example
• Tasks analyze requirements
• Work products requirements specification
• Relationships req. specs feed design
• Milestones reviewed requirements
• People Alice and Bob
• Methods use OO analysis with UML
• Tools Rational Rose

Process-3, CS431F06, BG Ryder/A Rountev 4

Generic View of Software Process

Definition phase

Development phase

Support phase

U
m
brella activities

3

Process-3, CS431F06, BG Ryder/A Rountev 5

Definition Phase
• Tasks related to problem definition

– What? - requirements, constraints, external
environment, validation criteria, etc.

• Step 1: system engineering
– Ascertain roles of hardware, software, people,

databases, operational procedures, etc. in
system

• Step 2: analysis of the problem
• requirements analysis

– Understanding what the users need and want
• domain analysis

– Illustrate key concepts in a set of SW systems (reuse)

• Step 3: project planning
– Resources (e.g., people), cost, schedule

Process-3, CS431F06, BG Ryder/A Rountev 6

Development Phase

• Tasks related to problem solution
– How? - architecture, components, data,

algorithms, programming, testing, etc.
• Step 1: software design (the blueprint)

– Design models that describe structure,
interactions, etc.

• Step 2: code generation
• Step 3: software testing

– Goal: uncover as many errors as possible

4

Process-3, CS431F06, BG Ryder/A Rountev 7

Support (Maintenance) Phase

• Tasks related to software evolution
– Definition and development in the context of

existing software
• Adaptation to changes in the environment

– New hardware, changes in OS, business rules,
etc.

• Correction of defects
– e.g. Y2K problem - many billions of dollars

• Enhancements (new features, etc.)
• Reengineering: for easier future changes

Process-3, CS431F06, BG Ryder/A Rountev 8

Real-World Example: Cobol

GetBookRankings.
 MOVE W-BookNum TO PrevBookNum
 MOVE ZEROS TO BookSalesTotal
 PERFORM UNTIL W-BookNum NOT EQUAL TO PrevBookNum
 OR EndOfWorkfile
 ADD W-Copies TO BookSalesTotal
 RETURN WorkFile
 AT END SET EndOfWorkfile TO TRUE
 END-RETURN
 END-PERFORM

• Business programming language
– Initial spec: 19601960, last spec: 2002
– Y2K problem
– Millions lines of code in legacy applications
– Dozens of books and training courses

• “Cobol for the 21 century”, 10th ed

5

Process-3, CS431F06, BG Ryder/A Rountev 9

Some Umbrella Activities
• Project management

– Tracking and control of people, process, work
products, schedule, cost, quality, risk, etc.

• Quality assurance (Q&A): activities that
ensure high quality of all work products
– Formal technical reviews of requirement

specifications, designs, source code
– Software testing
– Keeping docs consistent with code base

• Configuration management
– Controls the changes in work products: e.g.,

version control for source code (e.g., RCS,CVS)

Process-3, CS431F06, BG Ryder/A Rountev 10

Process Model

• A general pattern for a software process
– Instantiated for each specific project
– May have to be modified for the particular

circumstances
• Not a dogma – adjust as necessary-helps to organize

the work in a manner where progress can be assessed

• The model defines tasks, work products,
relationships, milestones, etc.
– e.g. “The output of task X is input for task Y”

6

Process-3, CS431F06, BG Ryder/A Rountev 11

Observations
• Process models are idealizations

– The real world is a very complex place
– Provide a roadmap for SE work

• They can be difficult to execute
• They can be viewed as interfering with
“real work”

• Conformance can be faked
• But they provide stability, control and
organization to an activity that may
become chaotic, otherwise

Process-3, CS431F06, BG Ryder/A Rountev 12

Code-and-Fix Process

• The first thing people tried in the 1950s
– Beginning programmers often use it

1.Write program
2.Improve it (debug, add functionality,

improve efficiency, …)
3.GOTO 1

• Works for small 1-person projects and
for some CS course assignments

7

Process-3, CS431F06, BG Ryder/A Rountev 13

Problems with Code-and-Fix

• Poor match with user needs
• Bad overall structure

– No blueprint
• Poor reliability - no systematic
testing

• Maintainability? What’s that?
• What happens when the programmer
quits?

Process-3, CS431F06, BG Ryder/A Rountev 14

Code-and-Fix Process

from McConnell, After the Goldrush, 1999

8

Process-3, CS431F06, BG Ryder/A Rountev 15

A More Advanced Process

from McConnell, After the Goldrush, 1999

Process-3, CS431F06, BG Ryder/A Rountev 16

Examples of Process Models

• Waterfall model
• Prototyping model
• Spiral model (an ‘88 classic)
• Iterative & incremental model

9

Process-3, CS431F06, BG Ryder/A Rountev 17

Waterfall Model
• The “classic” process model since 1970s

– Also called “software life cycle”

Analysis

Support

Design

Code

Test & Integrate

Simplified view

Process-3, CS431F06, BG Ryder/A Rountev 18

Waterfall Phases

• Analysis: requirements (features, etc.)
and relevant domain concepts

• Design: solution blueprint for the
systems and for individual components

• Individual components: implementation
and testing (unit testing)

• System integration
– with integration/system testing

• Software support and maintenance

10

Process-3, CS431F06, BG Ryder/A Rountev 19

Key Points of the Model

• The project goes through the phases
sequentially

• Possible feedback and iteration across
phases
– e.g., during coding, a design problem is identified

and fixed
• Typically, few or no iterations are used

– e.g., after a certain point of time, the design is
“frozen”

Process-3, CS431F06, BG Ryder/A Rountev 20

Waterfall Model Assumptions

• Requirements are known from the
start, before design

• Requirements are stable
• The design can be done abstractly and
speculatively
– i.e., it is possible to correctly guess in
advance how to make it work

• Everything will fit together when we
start the integration

11

Process-3, CS431F06, BG Ryder/A Rountev 21

Pros and Cons
• Pros: widely used, systematic, good for
projects with well-defined requirements
– Makes managers happy

• Inflexible: the actual process is not so
sequential
– Limited use of iteration, problems from
earlier phases are hard to fix

• Expects full requirements early
• Working program is not available early

– High risk issues are not tackled early
enough

Process-3, CS431F06, BG Ryder/A Rountev 22

Prototyping Model

• Problem: customers have general objectives
but no detailed requirements

• Solution: build a prototype
– Analysis of known requirements, plus quick-and-

dirty design and implementation
• Iterations: customer evaluation followed by

prototype refinements
• Goal: to understand and identify the

requirements
– The prototype is thrown away!

12

Process-3, CS431F06, BG Ryder/A Rountev 23

Pros and Cons

• Better understanding of requirements
– Good starting point for other process models

(e.g., waterfall)
• Problem: the prototype may be used as a

starting point rather than being thrown away
– Bad idea: prototypes typically have poor design

that adversely affects maintainability as well as
poor quality

• Bad decisions during prototyping may
propagate to the real product
– E.g., bad choice of O/S platform or PL

Process-3, CS431F06, BG Ryder/A Rountev 24

Spiral Model
• An evolutionary model that combines

prototyping with waterfall phases
• SW developed in series of evolutionary releases that

better define/implement system while reducing risk
• Implement increasingly more complete versions of the

software
• Do same activities as in waterfall, but cyclically, with

milestones and assessment at the end of each cycle
influencing the next cycle’s tasks

• Developed by Barry Boehm in mid-1980’s at
TRW (cf IEEE Computer, May 1988)

13

Process-3, CS431F06, BG Ryder/A Rountev 25

Example of Spiral Model

TRW SW Productivity System
1. Outline initial idea for product, establish needs (2-3 months)
2. Refine outline from 1, for a product that will increase

productivity two-fold over 5 years at $10K per person (12
months)

• Suggested a testbed of 100 people for prototype environment
• Assessed risks and established a steering group for product

3. Start new project to develop ‘bare bones’ version of product
including an initial design

4. Iterate product through several versions of evolution and
assessment

5. Later cycles enhance product to meet new needs

Process-3, CS431F06, BG Ryder/A Rountev 26

Pros and Cons• Pros:
– Realistic for large SW systems
– Since SW is evolving, technical risks discerned

by users and developers can be more easily
handled in mid-stream

– Allows prototyping to be applied during each
phase of SW evolution

– Maintains step-wise approach with ‘go-backs’ to
earlier stages

– Can result in non-uniform designs that focus on
risky parts of the system

• Cons:
– Requires risk-assessment expertise for success
– Hard to convince customers that product will be

finished

14

Process-3, CS431F06, BG Ryder/A Rountev 27

Iterative & Incremental Model

• Waterfall: single release
• Iterative: many releases (increments)

– First increment: core functionality
– Successive increments: add/fix functionality
– Final increment: the complete product

• Each iteration: a short mini-project with a
separate lifecycle
– e.g., waterfall

• Increments may be built sequentially or in
parallel

• Spiral was one of first iterative process
models

Process-3, CS431F06, BG Ryder/A Rountev 28

Iterative & Incremental Model

• Outcome of each iteration: tested,
integrated, executable system

• Iteration length is short and fixed
– e.g. 2 weeks, 4 weeks, 6 weeks

• Takes many iterations to finish(e.g. 10-15)
• Does not try to “freeze” the requirements

and design speculatively
– Rapid feedback, early insight, opportunity to

modify requirements and design
– Later iterations: reqs/design become stable

15

Process-3, CS431F06, BG Ryder/A Rountev 29

Waterfall (Sequential) Model

Analysis

Design

Code

Test & Integrate

e.g. 1-2 years

Process-3, CS431F06, BG Ryder/A Rountev 30

Iterative Model
Analysis

Design

Code

Test & Integrate

iteration n: a few weeks

iteration n+1: a few weeks

feedback (from demos & testing),
insights, risk management

Analysis

Design

Code

Test & Integrate

16

Process-3, CS431F06, BG Ryder/A Rountev 31

Iterative & Incremental Model

• Risks are addressed in early iterations
– e.g. server application with 10,000
concurrent users and <1sec response:
quickly build and evaluate
components/architecture

• Continuous feedback from users
– To build what the users want

• Early quality control: testing and
reviews

Process-3, CS431F06, BG Ryder/A Rountev 32

Iterative vs. Waterfall - 1

• Waterfall: tries to fully specify and
freeze requirements and design
– Problem 1: the requirements may change
in the future

– Problem 2: early design decisions are
speculative

• Iterative: accepts requirements change
as inevitable, and allows the design to
evolve

17

Process-3, CS431F06, BG Ryder/A Rountev 33

Iterative vs. Waterfall - 2

• Waterfall: inadequate risk management
– Testing in the end, when problems are hard and

expensive to fix
• Iterative: identifies high-risk issues through

rapid feedback
– At the end of each iteration, learn from users,

developers, testers
• Users try the partial system and say “Well, the

feature I wanted is actually ...”
• Usability testing: (e.g. the user interface)
• Load testing

Process-3, CS431F06, BG Ryder/A Rountev 34

Pros and Cons - Iterative Model

• Early discovery of high risks
– Technical, requirements, usability, etc.

• Early visible progress
– Customers and managers are happy

• Managed complexity: avoids long and
complex analysis/design steps
– No “analysis paralysis”
– Smaller increments are easier to manage

Accepted as best practice

18

Process-3, CS431F06, BG Ryder/A Rountev 35

Pros and Cons - Iterative Model

• Operational product is available early
– Allows early feedback from users

• Result: a system the users actually want
– The market may force a limited version

• Accommodates changes
– e.g. experience with earlier increments
may be used to define/refine the
requirements

• Constant changes (“feature creep”)
may erode system architecture

Process-3, CS431F06, BG Ryder/A Rountev 36

Unified Process - Overview

• The Unified Process (UP): an example of
an iterative and incremental process
– Very popular in the last few years
– By same folks who developed UML
– Incorporates modern principles for software

development
• Will provide a context for our discussion

of analysis and design
• Objectives:

• Define the organization and practices of the UP

19

Process-3, CS431F06, BG Ryder/A Rountev 37

A Little History
• “The three amigos”: Grady Booch, Ivar

Jacobson, James Rumbaugh
– Separate methodologies for object-oriented

analysis and design (OOAD) in the early 90s
– Created the Unified Modeling Language (UML) in

1996
• 1999: defined the Unified Process (UP) in

Rational Software Inc.
– Refinement: Rational Unified Process (RUP)
– Rational makes lots of money from the RUP

Process-3, CS431F06, BG Ryder/A Rountev 38

Organization of the UP

• Inception: preliminary investigation
• Elaboration: analysis, design, some
coding

• Construction: more coding and testing
• Transition: beta testing and deployment

inc. elaboration construction transition

iteration final release

20

Process-3, CS431F06, BG Ryder/A Rountev 39

Inception

• Short initial phase (e.g., about a week)
– Investigation of purpose, scope, and feasibility:

should we even bother?
• Order-of-magnitude unreliable estimates of

cost and time
• Definition of some requirements (10%)
• Plan for the first iteration of elaboration
• Possibly a proof-of-concept prototype

Process-3, CS431F06, BG Ryder/A Rountev 40

Elaboration

• Analysis
– Most of requirements analysis
– Most of domain analysis (domain modeling)

• Most of the design
• Some coding

– Iterative implementation of the core
architecture and high-risk requirements

• Testing of all implemented code
• More precise estimates of time/cost

21

Process-3, CS431F06, BG Ryder/A Rountev 41

Remaining Phases

• Construction phase
– Iterative implementation and testing of
the remaining lower risk and easier
aspects

– Very little analysis or design
– Preparation for deployment

• Transition
– Beta testing
– Deployment

Process-3, CS431F06, BG Ryder/A Rountev 42

UP Disciplines
• Discipline: a set of activities and
related artifacts in one subject area

• Artifact: any kind of work product
• e.g., code, diagrams, models, documents, ...

• We will consider three disciplines
– Business modeling – e.g., domain analysis
– Requirements – requirements analysis
– Design

22

Process-3, CS431F06, BG Ryder/A Rountev 43

Effort Distribution

source: white paper, May 2002

Process-3, CS431F06, BG Ryder/A Rountev 44

Iteration Length

• Iterations should be short
– Typically 2-6 weeks
– Goal: small steps, rapid feedback, adaptation
– Exception: massive teams with lots of

communication – but no more than 3-6 months
• Iterations should be timeboxed (i.e., fixed

in length)
– The system should be integrated, tested, and

stabilized by the schedule date
– If not possible: move tasks to the next iteration

23

Process-3, CS431F06, BG Ryder/A Rountev 45

Reasons for Timeboxing
• Work expands to fill the available time

– With a deadline two weeks away, people
focus and get moving

• Encourages prioritization and decisiveness
• Team satisfaction and confidence

– Quick and repeating sense of completion,
competency, and closure

– Also, increased confidence for customers and
managers

Process-3, CS431F06, BG Ryder/A Rountev 46

High-risk and High-value Issues
• In the early iterations, focus on:

– Overall architecture
– Components for risky requirements
– Components with high value to the customer

• Better to fail early than late
– The process is risk-driven

time

risk

software

24

Process-3, CS431F06, BG Ryder/A Rountev 47

Other UP Practices
• Continuously engage the customer
• Early focus on the core architecture

– Shallow implementation: overall structure,
component interfaces and responsibilities,
without an “in-depth” implementation

• Verify quality early and often
– Testing and reviews: critical for early
feedback and to avoid expensive late
defects

– Unlike the waterfall model

Process-3, CS431F06, BG Ryder/A Rountev 48

Some Work Products

XDomain Model

XXXImplem. Model
(code)

XXDesign Model

XXSupplem. Spec
XXUse-Case Model

TransConstElabIncepArtifact

Requirements analysis: Use-Case Model +
 Supplementary Specification
Domain analysis: Domain Model
Design: Design Model
Coding: Implementation Model

Cf Larman, p 38

25

Process-3, CS431F06, BG Ryder/A Rountev 49

Relationships Among Models

Use Case Model

Domain Model

Design Model

Code

Process-3, CS431F06, BG Ryder/A Rountev 50

A Borrowed Joke

How many software engineers does
it take to change a light bulb?

Five. Two to write the specification,
one to screw it in, and two to explain
why the project was late.

