
1

Requirements2-5, CS431F06, BG Ryder/A Rountev 1

Requirements Analysis - 2

• Focusing on the WHAT not the HOW
• System sequence diagrams and how
they relate to use cases

Requirements2-5, CS431F06, BG Ryder/A Rountev 2

System Sequence Diagram (SSD)

• Describes in more detail a scenario in a
use case
– Created from the text of the use case

• A kind of UML sequence diagram
– SSD is a simplified version useful for
requirements analysis

– More general version of sequence
diagrams: later, when talking about design

• Example: Process Sale for POS system

2

Requirements2-5, CS431F06, BG Ryder/A Rountev 3

Partial SSD for the Main Scenario
:Cashier :System

enterItem(itemID)

makeNewSale()

description, total

endSale()

*[more items]

 Customer arrives with goods
 Cashier starts a new sale
 REPEAT UNTIL DONE:

 Cashier enters item id
 System records sale line item and presents description and running total

Loop
construct

Requirements2-5, CS431F06, BG Ryder/A Rountev 4

Elements of a SSD

• Actors
– UML notation for an object

• System events
– Cashier generates makeNewSale,

enterItem, and endSale system events
• (Optional) information from the system
back to the actors
– item description, running total, etc.

:Cashier

3

Requirements2-5, CS431F06, BG Ryder/A Rountev 5

SSD for “Process Sale”
 Cashier starts a new sale
 Cashier enters item id
 System records sale line item and presents description and

running total

Repeat 3-4 until Cashier indicates “done”

:Cashier :System

enterItem(itemID)

makeNewSale()

description, total

endSale()

*[more items]

Requirements2-5, CS431F06, BG Ryder/A Rountev 6

SSD for “Process Sale” (cont)

 System presents total with taxes. To determine
taxes, System uses an external Tax Calculator

:Cashier :System

getTaxes(sale)

total with taxes

endSale()
:TaxCalculator

taxes

4

Requirements2-5, CS431F06, BG Ryder/A Rountev 7

SSD for “Process Sale” (cont)
 Cashier enters cash amount tendered, and System presents

change due
 System presents receipt
 System logs completed sale and sends sale info to the external

Accounting system and to the external Inventory system

:Cashier :System

postSale(sale)

change, receipt

makePayment(amount)
:Accounting :Inventory

update(sale)

Requirements2-5, CS431F06, BG Ryder/A Rountev 8

Abstractions in SSDs

• Events and return values are abstractions
– Independent of mechanism & representation

• makePayment(amount)
– Shows input info
– Looks like a method call, but is really an
abstraction of an event

• Name: should capture the intent
– Avoid specifying implementation choices

• enterItem(itemID) is better than scan(itemID)

5

Requirements2-5, CS431F06, BG Ryder/A Rountev 9

Timeline for SSDs
• SSDs are created during elaboration

– Clarify the major events that the system
should be able to handle

– Later we design objects to handle these
events (object-oriented design)

• SSDs are created for some chosen
scenarios from the current iteration
– Happy path + frequent/complex alternatives

Requirements2-5, CS431F06, BG Ryder/A Rountev 10

Alternative Scenarios
In the main scenario:
 3. Cashier enters item identifier
In the Extensions part of the use case:
 3a. Invalid identifier:
 1. System signals error and rejects
entry

Condition: triggers this alternative
Handing: one or more steps

6

Requirements2-5, CS431F06, BG Ryder/A Rountev 11

Alternative Scenarios
In the main scenario:
 3. Cashier enters item identifier
In the Extensions part of the use case:
 3b. There are multiple items of the
same category (e.g., 5 bottles of Coke)
 1. Cashier enters item id & quantity

Multiple conditions 3a,3b for one step
from the main scenario,with different handlers

Requirements2-5, CS431F06, BG Ryder/A Rountev 12

Alternative Scenarios
In the main scenario:
 6. Cashier asks customer for payment
In the Extensions part of the use case:
 6a. Customer doesn’t have enough cash
 1. Cashier asks for alternative
payment method

1a. Customer tells Cashier to cancel
sale; Cashier cancels sale on System

An example of a failure scenario

7

Requirements2-5, CS431F06, BG Ryder/A Rountev 13

Another Example
In the main scenario:
 5. System presents total with taxes. To
determine taxes, it uses a TaxCalculator

Alternative: What if some customers are
entitled to a discount? – e.g., employees

• Suppose that each such customer has a
customer_id that determines discount %
– Ids and discount % are stored in an external
CustomerInfo system

Requirements2-5, CS431F06, BG Ryder/A Rountev 14

Another Example
In the main scenario:
 5. System presents total with taxes …
In the Extensions part of the use case:
5a. Customer is eligible for discount

1. Cashier signals discount
2. Cashier enters customer id
3. System presents updated total.

System uses external CustomerInfo
system to get discount percentage

8

Requirements2-5, CS431F06, BG Ryder/A Rountev 15

SSD for this scenario
:Cashier :System

total with taxes

makePayment(amount)

:CustomerInfo

startDiscount()

enterCustomerId(id)

updated total

getDiscount(id)

discount percentage

Requirements2-5, CS431F06, BG Ryder/A Rountev 16

Additional Info in a Use Case

• Non-functional requirements
– Usability: “The text on the screen should
be visible from 5 feet”

– Performance: “Credit authorization
response should be within 30 sec, 90% of
the time”

– Technology: “Identifier entered by laser
scanner or by keyboard”

• Eventually gathered in the
Supplementary Specification

9

Requirements2-5, CS431F06, BG Ryder/A Rountev 17

Use case diagram
NextGen POS

Manage Users

. . .

Cashier

System

Administrator

actor

use case

communicationsystem boundary

Payment

Authorization

Service

«actor»

Tax Calculator

«actor»

Accounting

System

alternate

notation for

a computer

system actor

«actor»

HR System

Cash In

«actor»

Sales Activity

System

Manage Security

Analyze Activity

Customer

Manager

Process Sale

Handle Returns

Larman, p 90

Use case

Actor

Requirements2-5, CS431F06, BG Ryder/A Rountev 18

UML Use Case Diagram

• UML notation for representing actors,
use cases, and their relationships

• The diagram is secondary to the actual
use cases: need to focus on text
– Use-Case Model = text of the use cases

• In this class, the use case diagram is
shown only for completeness

10

Requirements2-5, CS431F06, BG Ryder/A Rountev 19

Constructing the Use Cases

• Iteratively refined during inception and
elaboration

• Communication-intensive process
– Developers need to talk with domain
experts

– e.g., Extreme Programming
requires a user to be
co-located full-time with
the development team

• Focus on user intentions and goals

Requirements2-5, CS431F06, BG Ryder/A Rountev 20

Timeline

XDomain Model

XXXImplem. Model
XXDesign Model

XXSupplem. Spec
XXUse-Case Model

TransConstElabIncepArtifact

Requirements analysis: Use-Case Model +
 Supplementary Specification
Domain analysis: Domain Model
Design: Design Model
Coding: Implementation Model

11

Requirements2-5, CS431F06, BG Ryder/A Rountev 21

Supplementary Specification

• Describes other requirements
– In addition to the functional requirements
described by the use cases

• Functional requirements common across
many use cases
– Logging and error handling: e.g. “Log all
errors to persistent storage”

– Security: e.g. “All usage requires user
authentication”

Requirements2-5, CS431F06, BG Ryder/A Rountev 22

Supplementary Specification

• Usability requirements
– “Avoid colors associated with common forms of

color blindness”
– “The cashier is often looking at the customer, so

signals and warnings should be conveyed w/ sound”
• Reliability requirements

– Recoverability: “If there is a failure to use
external services (e.g. accounting system), store
the information locally to complete the sale”

12

Requirements2-5, CS431F06, BG Ryder/A Rountev 23

Supplementary Specification

• Performance requirements
– “External payment authorization should be
completed within 30 seconds, in 90% of
the cases“

• Supportability requirements
– Adaptability: “At certain points in the
scenarios, pluggable rules should be
enabled to accommodate different
customers”

– Configurability: “Different customers will
have different network configurations”

Requirements2-5, CS431F06, BG Ryder/A Rountev 24

Supplementary Specification

• Implementation constraints
– “Management insists on Java for long-term

portability, supportability, and ease of
development”

• Requirements for purchased components
– The tax calculator will be purchased from a third

party. The system must support pluggable tax
calculators for different countries

• And many more: business rules, legal issues,
standards, I/O devices, tools, ...

13

Requirements2-5, CS431F06, BG Ryder/A Rountev 25

Role of the Supplementary Spec
• Describes issues that are not easily
captured by use cases

• Particularly important are system-wide
attributes
– Performance, reliability, testability, etc.
– Central role during early design and
implementation
• E.g., a system-wide requirement for high fault
tolerance has very significant influence on
large-scale design decisions

Requirements2-5, CS431F06, BG Ryder/A Rountev 26

UP Timeline
• Inception: the supplementary
specification is only lightly developed
– Focus on risky system-wide requirements

• Elaboration: continuous refinement
– In parallel with early design/implementation
– Feedback for the requirements analysis
– Stabilized at the end of elaboration

14

Requirements2-5, CS431F06, BG Ryder/A Rountev 27

Real Users …

• Real users never know what they want,
but they always know when your program
doesn't deliver it

• Real users never stop asking for new
options

• Real users never know what to do with
new options

• Real users never read the documentation

