Requirements Analysis - 2

- Focusing on the WHAT not the HOW

- System sequence diagrams and how
they relate to use cases

Requirements2-5, CS431F06, BG Ryder/A Rountev

System Sequence Diagram (SSD)

- Describes in more detail a scenario in a
use case

- Created from the text of the use case
- A kind of UML sequence diagram

- SSD is a simplified version useful for
requirements analysis

- More general version of sequence
diagrams: later, when talking about design

- Example: Process Sale for POS system

Requirements2-5, CS431F06, BG Ryder/A Rountev

Partial SSD for the Main Scenario

m :stfem
i makeNewSale() >i
Loop : enterItem(itemID) >E
construct | Lo :
'q———___ description, total J
i *[more items] i
i endSale() R

I
Customer arrives with goods
Cashier starts a new sale
REPEAT UNTIL DONE:
Cashier enters item id
System records sale line item and presents description and running total

Requirements2-5, CS431F06, BG Ryder/A Rountev 3

Elements of a SSD

£

- Actors :Cashier
- UML notation for an object
- System events

- Cashier generates makeNewSale,
enterItem, and endSale system events

- (Optional) information from the system
back to the actors
- item description, running total, etc.

T

-

Requirements2-5, CS431F06, BG Ryder/A Rountev 4

SSD for "Process Sale”

= Cashier starts a new sale

= Cashier enters item id

= System records sale line item and presents description and
running total

Repeat 3-4 until Cashier indicates "done”

endSale()

|
Requirements2-5, ¢5431F06, BG Ryder/A Rountev 5

:Cashier :System
i makeNewSale() i
: enterItem(itemID) N:
E‘ ___ __ _ description, total ﬁi
i *Imore items] i
| >

SSD for "Process Sale” (cont)

= System presents total with taxes. To determine
taxes, System uses an external Tax Calculator

:Cashier :System :TaxCalculator

endSale() | |
| i getTaxes(sale) »i
i | taxes i
! D !

|
Requirements2-5, CS431F06, BG Ryder/A Rountev 6

SSD for "Process Sale” (cont)

= Cashier enters cash amount tendered, and System presents

change due
= System presents receipt

= System logs completed sale and sends sale info to the external
Accounting system and to the external Inventory system

:Cashier :System :Accounting | | :Inventory
niakePaymenT(amc‘tlint) i i
| | | |
| . | | |
i change, receipt! ! !
S TR a a
! ! postSaIe(salem !
| [|
Required:lenfsz-& CS431F06, BG Ryder/A Roumiev

updc?rte(sale)

<

Abstractions in SSDs

- Events and return values are abstractions
- Independent of mechanism & representation

* makePayment(amount)
- Shows input info

- Looks like a method call, but is really an

abstraction of an event
* Name: should capture the intent

- Avoid specifying implementation choices
- enterItem(itemID) is better than scan(itemID)

Requirements2-5, CS431F06, BG Ryder/A Rountev

Timeline for SSDs

- SSDs are created during elaboration

- Clarify the major events that the system
should be able to handle

- Later we design objects to handle these
events (object-oriented design)

- SSDs are created for some chosen
scenarios from the current iteration

- Happy path + frequent/complex alternatives

Requirements2-5, CS431F06, BG Ryder/A Rountev 9

Alternative Scenarios
In the main scenario:
3. Cashier enters item identifier
In the Extensions part of the use case:

3a. Invalid identifier:

. System signals error and rejects
entry

Condition: triggers this alternative
Handing: one or more steps

Requirements2-5, CS431F06, BG Ryder/A Rountev 10

Alternative Scenarios
In the main scenario:
3. Cashier enters item identifier
In the Extensions part of the use case:

3b. There are multiple items of the
same category (e.g., 5 bottles of Coke)
1. Cashier enters item id & quantity

Multiple conditions 3a,3b for one step
from the main scenario,with different handlers

Requirements2-5, CS431F06, BG Ryder/A Rountev 1

Alternative Scenarios

In the main scenario:
6. Cashier asks customer for payment
In the Extensions part of the use case:

6a. Customer doesn't have enough cash

1. Cashier asks for alternative
payment method

la. Customer tells Cashier to cancel
sale; Cashier cancels sale on System

An example of a failure scenario

Requirements2-5, CS431F06, BG Ryder/A Rountev 12

Another Example
In the main scenario:

5. System presents total with taxes. To
determine taxes, it uses a TaxCalculator

Alternative: What if some customers are
entitled to a discount? - e.g., employees

- Suppose that each such customer has a
customer_id that determines discount %

- Ids and discount % are stored in an external
CustomerInfo system

Requirements2-5, CS431F06, BG Ryder/A Rountev 13

Another Example
In the main scenario:

5. System presents total with taxes ..
In the Extensions part of the use case:
5a. Customer is eligible for discount
1. Cashier signals discount
2. Cashier enters customer id

3. System presents updated total.
System uses external CustomerInfo
system to get discount percentage

Requirements2-5, CS431F06, BG Ryder/A Rountev 14

SSD for this scenario

:Cashier :System :CustomerInfo

total with taxes |

enterCustomerId(id)

>

§ getDiscount(id)
 Jiscount percentage |

e

EmakePaymen'r(amourrr) %

Requirements2-5, CS431F06, BG Ryder/A Rountev 15

Additional Info in a Use Case

* Non-functional requirements

- Usability: "The text on the screen should
be visible from 5 feet”

- Performance: “Credit authorization
response should be within 30 sec, 90% of
the time”

- Technology: "Identifier entered by laser
scanner or by keyboard”

- Eventually gathered in the
Supplementary Specification

Requirements2-5, CS431F06, BG Ryder/A Rountev 16

Use case diagram

system boundary NextGen POV Use CClSe tion
N
o ~e_ 4
M d o L -
~ - ¢ @)
~ | A Process Sale N/ alternate
\\ / —_— I notation for
Customer / a computer
Payment system actor
/ e \/\ R N Authorization ¢ -7
Vo /) N - NN\ Service
Actor / £ Hande Returns) N
| /T A 4 \ N ,
\ ~ 7 - \ «actor» .
actor cochier /< \ Tax Calculator
U/ N T N\
N ~ \ «actor»
\\ Cash In \ Y Accounting
S~ - . System
Manager - I
-~ N «actor»
«actor» __—(Analyze Activity)
Sales Activity || N . // HR System
System T
’ij ,,,,,,,/'""T(j\/lanage Securit)f) .-
System < Manage Users \/ ~
Administrator ~ P
~ _— ~ use case
-7 N
(..)
N S
Requirements2-5, CS431F06, BG Ryder/A Rountev Laf‘man, P 90 17

UML Use Case Diagram

- UML notation for representing actors,
use cases, and their relationships

* The diagram is_secondary to the actual
use cases: heed to focus on text
- Use-Case Model = text of the use cases

* In this class, the use case diagram is
shown only for completeness

Requirements2-5, CS431F06, BG Ryder/A Rountev 18

Constructing the Use Cases

- Iteratively refined during inception and
elaboration

- Communication-intensive process

- Developers need to talk with domain
experts

- e.g., Extreme Programming r%g;;g;;;gd
requires a user to be s
co-located full-time with
the development team

- Focus on user intentions and goals

Requirements2-5, CS431F06, BG Ryder/A Rountev 19

Timeline
Artifact Incep | Elab | Const | Trans
Use-Case Model X X
Supplem. Spec X X
Domain Model X
Design Model X X
Implem. Model X X X

Requirements analysis: Use-Case Model +
Supplementary Specification

Domain analysis: Domain Model

Design: Design Model

Coding: Implementation Model

BG Ryder. 20

10

Supplementary Specification

- Describes other requirements
- In addition to the functional requirements
described by the use cases
* Functional requirements common across
many use cases

- Logging and error handling: e.g. “Log all
errors to persistent storage”

- Security: e.g. "All usage requires user
authentication”

Requirements2-5, CS431F06, BG Ryder/A Rountev

21

Supplementary Specification

* Usability requirements

- “Avoid colors associated with common forms of
color blindness”

- "The cashier is often looking at the customer, so
signals and warnings should be conveyed w/ sound”
- Reliability requirements

- Recoverability: "If there is a failure to use
external services (e.g. accounting system), store
the information locally to complete the sale”

Requirements2-5, CS431F06, BG Ryder/A Rountev

22

11

Supplementary Specification

* Performance requirements

- "External payment authorization should be
completed within 30 seconds, in 90% of
the cases"

- Supportability requirements

- Adaptability: "At certain points in the
scenarios, pluggable rules should be
enabled to accommodate different
customers”

- Configurability: "Different customers will
have different network configurations”

Requirements2-5, CS431F06, BG Ryder/A Rounte

Supplementary Specification

- Implementation constraints

- "Management insists on Java for long-term
portability, supportability, and ease of
development”

* Requirements for purchased components

- The tax calculator will be purchased from a third
party. The system must support pluggable tax
calculators for different countries

+ And many more: business rules, legal issues,
standards, I/0 devices, tools, ...

Requirements2-5, CS431F06, BG Ryder/A Rountev 24

12

Role of the Supplementary Spec

- Describes issues that are not easily
captured by use cases

* Particularly important are system-wide
attributes
- Performance, reliability, testability, etc.
- Central role during

* E.g., a system-wide requirement for high fault
tolerance has very significant influence on
large-scale design decisions

Requirements2-5, CS431F06, BG Ryder/A Rountev 25

UP Timeline

- Inception: the supplementary
specification is only lightly developed
- Focus on risky system-wide requirements

- Elaboration: continuous refinement
- In parallel with early design/implementation
- Feedback for the requirements analysis
- Stabilized at the end of elaboration

Requirements2-5, CS431F06, BG Ryder/A Rountev 26

Real Users ..

Real users never know what they want,
but they always know when your program
doesn't deliver it

Real users never stop asking for new
options

Real users never know what to do with
new options

Real users never read the documentation

Requirements2-5, CS431F06, BG Ryder/A Rountev 27

14

