
1

Requirements2-5, CS431F06, BG Ryder/A Rountev 1

Requirements Analysis - 2

• Focusing on the WHAT not the HOW
• System sequence diagrams and how
they relate to use cases

Requirements2-5, CS431F06, BG Ryder/A Rountev 2

System Sequence Diagram (SSD)

• Describes in more detail a scenario in a
use case
– Created from the text of the use case

• A kind of UML sequence diagram
– SSD is a simplified version useful for
requirements analysis

– More general version of sequence
diagrams: later, when talking about design

• Example: Process Sale for POS system

2

Requirements2-5, CS431F06, BG Ryder/A Rountev 3

Partial SSD for the Main Scenario
:Cashier :System

enterItem(itemID)

makeNewSale()

description, total

endSale()

*[more items]

 Customer arrives with goods
 Cashier starts a new sale
 REPEAT UNTIL DONE:

 Cashier enters item id
 System records sale line item and presents description and running total

Loop
construct

Requirements2-5, CS431F06, BG Ryder/A Rountev 4

Elements of a SSD

• Actors
– UML notation for an object

• System events
– Cashier generates makeNewSale,

enterItem, and endSale system events
• (Optional) information from the system
back to the actors
– item description, running total, etc.

:Cashier

3

Requirements2-5, CS431F06, BG Ryder/A Rountev 5

SSD for “Process Sale”
 Cashier starts a new sale
 Cashier enters item id
 System records sale line item and presents description and

running total

Repeat 3-4 until Cashier indicates “done”

:Cashier :System

enterItem(itemID)

makeNewSale()

description, total

endSale()

*[more items]

Requirements2-5, CS431F06, BG Ryder/A Rountev 6

SSD for “Process Sale” (cont)

 System presents total with taxes. To determine
taxes, System uses an external Tax Calculator

:Cashier :System

getTaxes(sale)

total with taxes

endSale()
:TaxCalculator

taxes

4

Requirements2-5, CS431F06, BG Ryder/A Rountev 7

SSD for “Process Sale” (cont)
 Cashier enters cash amount tendered, and System presents

change due
 System presents receipt
 System logs completed sale and sends sale info to the external

Accounting system and to the external Inventory system

:Cashier :System

postSale(sale)

change, receipt

makePayment(amount)
:Accounting :Inventory

update(sale)

Requirements2-5, CS431F06, BG Ryder/A Rountev 8

Abstractions in SSDs

• Events and return values are abstractions
– Independent of mechanism & representation

• makePayment(amount)
– Shows input info
– Looks like a method call, but is really an
abstraction of an event

• Name: should capture the intent
– Avoid specifying implementation choices

• enterItem(itemID) is better than scan(itemID)

5

Requirements2-5, CS431F06, BG Ryder/A Rountev 9

Timeline for SSDs
• SSDs are created during elaboration

– Clarify the major events that the system
should be able to handle

– Later we design objects to handle these
events (object-oriented design)

• SSDs are created for some chosen
scenarios from the current iteration
– Happy path + frequent/complex alternatives

Requirements2-5, CS431F06, BG Ryder/A Rountev 10

Alternative Scenarios
In the main scenario:
 3. Cashier enters item identifier
In the Extensions part of the use case:
 3a. Invalid identifier:
 1. System signals error and rejects
entry

Condition: triggers this alternative
Handing: one or more steps

6

Requirements2-5, CS431F06, BG Ryder/A Rountev 11

Alternative Scenarios
In the main scenario:
 3. Cashier enters item identifier
In the Extensions part of the use case:
 3b. There are multiple items of the
same category (e.g., 5 bottles of Coke)
 1. Cashier enters item id & quantity

Multiple conditions 3a,3b for one step
from the main scenario,with different handlers

Requirements2-5, CS431F06, BG Ryder/A Rountev 12

Alternative Scenarios
In the main scenario:
 6. Cashier asks customer for payment
In the Extensions part of the use case:
 6a. Customer doesn’t have enough cash
 1. Cashier asks for alternative
payment method

1a. Customer tells Cashier to cancel
sale; Cashier cancels sale on System

An example of a failure scenario

7

Requirements2-5, CS431F06, BG Ryder/A Rountev 13

Another Example
In the main scenario:
 5. System presents total with taxes. To
determine taxes, it uses a TaxCalculator

Alternative: What if some customers are
entitled to a discount? – e.g., employees

• Suppose that each such customer has a
customer_id that determines discount %
– Ids and discount % are stored in an external
CustomerInfo system

Requirements2-5, CS431F06, BG Ryder/A Rountev 14

Another Example
In the main scenario:
 5. System presents total with taxes …
In the Extensions part of the use case:
5a. Customer is eligible for discount

1. Cashier signals discount
2. Cashier enters customer id
3. System presents updated total.

System uses external CustomerInfo
system to get discount percentage

8

Requirements2-5, CS431F06, BG Ryder/A Rountev 15

SSD for this scenario
:Cashier :System

total with taxes

makePayment(amount)

:CustomerInfo

startDiscount()

enterCustomerId(id)

updated total

getDiscount(id)

discount percentage

Requirements2-5, CS431F06, BG Ryder/A Rountev 16

Additional Info in a Use Case

• Non-functional requirements
– Usability: “The text on the screen should
be visible from 5 feet”

– Performance: “Credit authorization
response should be within 30 sec, 90% of
the time”

– Technology: “Identifier entered by laser
scanner or by keyboard”

• Eventually gathered in the
Supplementary Specification

9

Requirements2-5, CS431F06, BG Ryder/A Rountev 17

Use case diagram
NextGen POS

Manage Users

. . .

Cashier

System

Administrator

actor

use case

communicationsystem boundary

Payment

Authorization

Service

«actor»

Tax Calculator

«actor»

Accounting

System

alternate

notation for

a computer

system actor

«actor»

HR System

Cash In

«actor»

Sales Activity

System

Manage Security

Analyze Activity

Customer

Manager

Process Sale

Handle Returns

Larman, p 90

Use case

Actor

Requirements2-5, CS431F06, BG Ryder/A Rountev 18

UML Use Case Diagram

• UML notation for representing actors,
use cases, and their relationships

• The diagram is secondary to the actual
use cases: need to focus on text
– Use-Case Model = text of the use cases

• In this class, the use case diagram is
shown only for completeness

10

Requirements2-5, CS431F06, BG Ryder/A Rountev 19

Constructing the Use Cases

• Iteratively refined during inception and
elaboration

• Communication-intensive process
– Developers need to talk with domain
experts

– e.g., Extreme Programming
requires a user to be
co-located full-time with
the development team

• Focus on user intentions and goals

Requirements2-5, CS431F06, BG Ryder/A Rountev 20

Timeline

XDomain Model

XXXImplem. Model
XXDesign Model

XXSupplem. Spec
XXUse-Case Model

TransConstElabIncepArtifact

Requirements analysis: Use-Case Model +
 Supplementary Specification
Domain analysis: Domain Model
Design: Design Model
Coding: Implementation Model

11

Requirements2-5, CS431F06, BG Ryder/A Rountev 21

Supplementary Specification

• Describes other requirements
– In addition to the functional requirements
described by the use cases

• Functional requirements common across
many use cases
– Logging and error handling: e.g. “Log all
errors to persistent storage”

– Security: e.g. “All usage requires user
authentication”

Requirements2-5, CS431F06, BG Ryder/A Rountev 22

Supplementary Specification

• Usability requirements
– “Avoid colors associated with common forms of

color blindness”
– “The cashier is often looking at the customer, so

signals and warnings should be conveyed w/ sound”
• Reliability requirements

– Recoverability: “If there is a failure to use
external services (e.g. accounting system), store
the information locally to complete the sale”

12

Requirements2-5, CS431F06, BG Ryder/A Rountev 23

Supplementary Specification

• Performance requirements
– “External payment authorization should be
completed within 30 seconds, in 90% of
the cases“

• Supportability requirements
– Adaptability: “At certain points in the
scenarios, pluggable rules should be
enabled to accommodate different
customers”

– Configurability: “Different customers will
have different network configurations”

Requirements2-5, CS431F06, BG Ryder/A Rountev 24

Supplementary Specification

• Implementation constraints
– “Management insists on Java for long-term

portability, supportability, and ease of
development”

• Requirements for purchased components
– The tax calculator will be purchased from a third

party. The system must support pluggable tax
calculators for different countries

• And many more: business rules, legal issues,
standards, I/O devices, tools, ...

13

Requirements2-5, CS431F06, BG Ryder/A Rountev 25

Role of the Supplementary Spec
• Describes issues that are not easily
captured by use cases

• Particularly important are system-wide
attributes
– Performance, reliability, testability, etc.
– Central role during early design and
implementation
• E.g., a system-wide requirement for high fault
tolerance has very significant influence on
large-scale design decisions

Requirements2-5, CS431F06, BG Ryder/A Rountev 26

UP Timeline
• Inception: the supplementary
specification is only lightly developed
– Focus on risky system-wide requirements

• Elaboration: continuous refinement
– In parallel with early design/implementation
– Feedback for the requirements analysis
– Stabilized at the end of elaboration

14

Requirements2-5, CS431F06, BG Ryder/A Rountev 27

Real Users …

• Real users never know what they want,
but they always know when your program
doesn't deliver it

• Real users never stop asking for new
options

• Real users never know what to do with
new options

• Real users never read the documentation

