
1

Testing-11, CS431 F06, BG Ryder/A Rountev 1

Testing

• Basic ideas and principles
• Traditional testing strategies

• Unit, integration, regression, validation,
system

• OO Testing techniques
• Application of traditional techniques to
OO software

Testing-11, CS431 F06, BG Ryder/A Rountev 2

Motivation

• People are not perfect
– We make errors in design and code

• Goal of testing: given some code,
uncover as many errors are possible

• Important and expensive activity
– Not unusual to spend 30-40% of total
project effort on testing

– For critical systems (e.g., flight control):
cost can be several times the cost of all
other activities combined



2

Testing-11, CS431 F06, BG Ryder/A Rountev 3

What is the goal of testing?

• Testing - process of executing a
program to find errors
– Successful test causes the program to
FAIL

– Can’t expect goal to be demonstration that
program is error-free

– Testing can validate not verify!

Testing-11, CS431 F06, BG Ryder/A Rountev 4

A Way of Thinking

• Design and coding are creative
• Testing is destructive

– The primary goal is to “break” the
software

• Very often the same person does both
coding and testing
– Need “split personality”: when you start
testing, become paranoid and maliciousparanoid and malicious

– Surprisingly hard to do: people don’t like
finding out that they made mistakes



3

Testing-11, CS431 F06, BG Ryder/A Rountev 5

Testing Objectives

• Testing is a process of executing
software with the intent of finding
errors

• Good testing has a high probability of
finding as-yet-undiscovered errors

• Successful testing discovers unknown
errors
– If did not find any errors, need to ask
whether our testing approach is good

Testing-11, CS431 F06, BG Ryder/A Rountev 6

Basic Definitions

• Test case specifies
– Inputs + pre-test state of the software
– Expected results (outputs and state)

• Black-box testing: ignores the internal
logic of the software
– Given this input, was the output correct?

• White-box testing: uses knowledge of
the internal structure of the software
– e.g. write tests to “cover” internal paths



4

Testing-11, CS431 F06, BG Ryder/A Rountev 7

But Testing All Paths is impossible

• Assume we have 100 LOC in C
• 2 nested loops (from 1-20 times each)
• W/I inner loop have 4 if-then-else constructs
which yields 1014 posisble paths
– If we assume a processor can develop a test case,

execute it and evaluate it in 1 millisecond, then
working 24/7, the processor would take 3170 YEARS
to test this program

Testing-11, CS431 F06, BG Ryder/A Rountev 8

Testing Principles

• Test must have an expected output
• Programmer should not test their own code

or it becomes proofreading
• Need to thoroughly inspect all test results
• Test cases needed for the invalid and

unexpected values as well as for the
expected and valid conditions

• Must look to see if a program fails to do
what it is supposed to do, and if it does
what it is not supposed to do



5

Testing-11, CS431 F06, BG Ryder/A Rountev 9

Testing Principles

• Save tests for a regression suite
• Don’t plan testing assuming no errors will be

found
• Probability of more errors in a section of

code is proportional to the number of errors
already found in that section

• Errors cluster -- very unintuitive, but observable
• Good testing is creatively and intellectually

challenging

Testing-11, CS431 F06, BG Ryder/A Rountev 10

Traditional Testing Strategies

• Unit testing: per component
• Can be done for multiple components in parallel
• What’s tested?

– Interface, local data structures, boundary conditions,
independent paths, error handling paths

• Which errors found?
– Computation problems, loop errors, bad error messages

• May require test driver to run component
under test (CUT) and stubs for components it
calls
– Stubs provide minimal functionality
– Drivers and stubs are overhead to test process



6

Testing-11, CS431 F06, BG Ryder/A Rountev 11

Traditional Testing Strategies

• Integration testing:
• Systematically combining components while
checking for interface errors

• Big Bang vs Incremental
– Top down

• Move down through control hierarchy of
modules; can do depth-first or breadth-first

• Replace each stub by a component as testing
progresses downwards

• Difficult if processing in lower components
necessary to test upper components - makes
stubs complicated to build

Testing-11, CS431 F06, BG Ryder/A Rountev 12

Traditional Testing Strategies

– Bottom up
• Begin testing with modules at bottom of
hierarchy and work way upwards
– Avoids need for stubs
– Gather lower components into clusters which can be

tested by a driver

• Regression testing
• Save representative selection of tests to make
sure functionality is not changed when code is
changed



7

Testing-11, CS431 F06, BG Ryder/A Rountev 13

Traditional Testing Strategies

• Validation testing
• Checks software behaves as user expects;
conformity to requirements

• May involve alpha and/or beta test releases

• System testing
• To fully exercise the system to fully check
integration of all elements (including HW
platform)

• Types: recovery testing, security testing,
stress testing, performance testing

Testing-11, CS431 F06, BG Ryder/A Rountev 14

OO Testing Techniques
• Unit testing

– Class testing
• Check the state behavior and operations encapsulated in

the class
• Can apply usual white-box testing techniques to methods

in the class
• Integration testing

– Thread-based testing
• Integrate set of classes needed to respond to one input or

event for the system
• Use regression tests to make sure no side effects are

introduced
– Use-based testing

• Construct system by testing classes that use very few, if
any server classes; continue to test classes dependent
upon them, as go up the “uses” hierarchy layers



8

Testing-11, CS431 F06, BG Ryder/A Rountev 15

OO Testing Techniques

– Drivers may simulate the UI or to test
groups of classes; Stubs may be necessary
if not all classes are written

– Cluster testing
• To find problems in collaborations of bad
interactions or improper specifications

Testing-11, CS431 F06, BG Ryder/A Rountev 16

Applicability of Traditional Techniques

• Fault-based testing
– Faults looked for during integration include bad

operation calls or message connections
• Unexpected result, wrong message used, incorrect

invocation
• Look for faults in the caller, not the callee

• Test cases and Inheritance
• Subclass methods need to be tested independently from

superclass methods they override
• Inherited superclass methods may need to be retested

when calling overriding subclass methods (for subclass
objects)



9

Testing-11, CS431 F06, BG Ryder/A Rountev 17

Applicability of Traditional Techniques

• Scenario-based testing
• Based on use cases
• Often more complex than fault-based tests, because

they exercise multiple subsystems

• Testing surface structure
• Corresponds to black-box testing; observable structure

by end-users

• Testing deep structure
• Corresponds to white-box testing which ‘covers’ the

control-flow or data-flow structure of the program

Testing-11, CS431 F06, BG Ryder/A Rountev 18

How to know when to stop testing?

• Decide based on some test-case design
methodology

• Only can use for some test phases

• When detect some pre-defined number of
errors

• Can use predictive models for estimation

• Examine number of errors found per unit of
time

• Decide if need to continue based on slope of graph

• In reality -- RUN OUT OF TIME


