
1

Testing2-11, CS431 F06, BG Ryder/A Rountev 1

Testing2

• White box testing
– Control-flow and dataflow metrics
– Coverage metrics

• Black box testing
• Testing OO programs

– Class testing
• Testing polymorphism
• Building call graphs using class hierarchy information

Testing2-11, CS431 F06, BG Ryder/A Rountev 2

Control-flow-based Testing

• Traditional form of white-box testing
• Step 1: From the source code, create
a graph describing the flow of control
– Called the control flow graph
– The graph is created (extracted from the
source code) manually or automatically

• Step 2: Design test cases to cover
certain elements of this graph
– Nodes, edges, branches, paths

2

Testing2-11, CS431 F06, BG Ryder/A Rountev 3

Example

s:=0;
d:=0;
while (x<y) {
 x:=x+3;
 y:=y+2;
 if (x+y < 100)
 s:=s+x+y;
 else
 d:=d+x-y;
}

s:=0
d:=0

x<y?

x:=x+3;
y:=y+2;

x+y<100?s:=s+x+y

d:=d+x-y

Control-flow graph

T

F

Testing2-11, CS431 F06, BG Ryder/A Rountev 4

Elements of a Control Flow Graph

• Three kinds of nodes:
– Statement nodes: single-entry-single-exit
sequences of statements

– Predicate (decision) nodes: conditions for
branching

– Auxiliary nodes: (optional) for easier
understanding of conditional flow
constructs (e.g. merge points for IF)

• Edges: show possible flow of control

3

Testing2-11, CS431 F06, BG Ryder/A Rountev 5

IF-THEN, IF-THEN-ELSE, SWITCH

.

if (c)
 then …
join pointjoin point

if (c)
 then …
 else …
join pointjoin point

switch (c)
 case 1: …
 case 2: …
 . . .
join pointjoin point

.

Testing2-11, CS431 F06, BG Ryder/A Rountev 6

Exampleswitch (position)
 case CASHIER:
 if (empl_yrs > 5)
 bonus := 1;
 else

bonus := 0.7;
 break;
 case MANAGER:

bonus := 1.5;
if (retiring_soon)
 bonus := 1.2 * bonus

 break;
 case ...
endswitch

.

4

Testing2-11, CS431 F06, BG Ryder/A Rountev 7

Mapping for Loops

while (c) {
 …
}

. . .

Note: other loops (e.g. FOR,
DO-WHILE, …) are mapped similarly

Mini-assignment: figure out how to map
these other styles of loops

Testing2-11, CS431 F06, BG Ryder/A Rountev 8

Statement Coverage

• Given the control flow graph, define a
coverage “target” and write test cases
to achieve it

• Traditional goal: statement coverage
– Find a set of tests that cover all nodes

• Hypothesis: Code that has not been
executed during testing is more likely
to contain errors
– Often this is the “low-probability” to be
executed code

5

Testing2-11, CS431 F06, BG Ryder/A Rountev 9

Example
• Suppose that we write and

execute two test cases
• Test case #1: follows path
1-2-exit
• Test case #2: 1-2-3-4-5-7-

8-2-3-4-5-7-8-2-exit (loop
twice, and both times take
the true branch)

• Problem: node 6 is never
executed, so we don’t have
100% statement coverage

2

1

3

7
6

4
5

8

T F

exit

Testing2-11, CS431 F06, BG Ryder/A Rountev 10

Branch Coverage

Goal: write tests that cover all branches
of the predicate nodes
– True and false branches of each IF
– The two branches corresponding to the
condition of a loop

– All alternatives in a SWITCH
• In modern languages, branch coverage
implies statement coverage
– Because there are no goto’s

6

Testing2-11, CS431 F06, BG Ryder/A Rountev 11

Branch Coverage

• Statement coverage does not imply
branch coverage

• Example: if (c) then s;
– By executing only with c=true, we will
achieve statement coverage, but not
branch coverage

• Motivation: experience shows that
many errors occur in “decision making”
– Plus, it subsumes statement coverage

Testing2-11, CS431 F06, BG Ryder/A Rountev 12

Example
• Same example as
before: two test cases
– Path 1-2-exit
– Path 1-2-3-4-5-7-8-
2-3-4-5-7-8-2-exit

• Problem: the “false”
branch of 4 is never
taken - don’t have
100% branch coverage

2

1

3

7
6

4
5

8

T F

7

Testing2-11, CS431 F06, BG Ryder/A Rountev 13

Achieving Branch Coverage

• Branch coverage: a necessary minimum
– Pick a set of start-to-end paths that cover all

branches, and write tests cases to execute these
paths

• Basic strategy
– Add a new path that covers at least one edge

that is not covered by the current paths
– Sometimes the set of paths chosen with this

strategy is called the “basis set”
• Cf PRE Ch 14.4.2

Testing2-11, CS431 F06, BG Ryder/A Rountev 14

Testing Loops
• Simple loops

• Skip loop entirely
• Go once through the loop
• Go twice through the loop
• If loop has max passes=n, then go n-1,n, n+1
times through the loop

• Nested loops
• Set all outer loops to their minimal value and
test innermost loop

• Add tests of out-of-range values
• Work outward, at each stage holding all outer
loops at their minimal value

• Continue until all loops are tested

8

Testing2-11, CS431 F06, BG Ryder/A Rountev 15

Dataflow-based Testing
• Test connections between variable
definitions (“write”) and variable uses
(“read”)

• Variation of the control flow graph
– A node represents a single statement, not
a single-entry-single-exit chain of
statements

• Set DEF(n) contains variables that are
defined (written) at node n

• Set USE(n): variables that are read

Testing2-11, CS431 F06, BG Ryder/A Rountev 16

Example

s:=0;
x:=0;
while (x<y) {
 x:=x+3;
 y:=y+2;
 if (x+y<10)
 s:=s+x+y;
 else
 s:=s+x-y;
}

21 3

9
8

6
7

10

1
2
3
4
5
6
7

8

5

4
DEF(1)={s} USE(1)=∅
DEF(2)={x} USE(2)=∅
DEF(3)=∅ USE(3)={x,y}
DEF(4)={x} USE(4)={x}
DEF(5)={y} USE(5)={y}
DEF(6)=∅ USE(6)={x,y}
DEF(7)={s} USE(7)={s,x,y}
DEF(8)={s} USE(8)={s,x,y}
DEF(9)=∅ USE(9)=∅
DEF(10)=∅ USE(10)=∅

assume y is already initialized

9

Testing2-11, CS431 F06, BG Ryder/A Rountev 17

Reaching Definitions

21 3

9
8

6
7

10

5

4

DEF(1)={s} USE(1)=∅
DEF(2)={x} USE(2)=∅
DEF(3)=∅ USE(3)={x,y}
DEF(4)={x} USE(4)={x}
DEF(5)={y} USE(5)={y}
DEF(6)=∅ USE(6)={x,y}
DEF(7)={s} USE(7)={s,x,y}
DEF(8)={s} USE(8)={s,x,y}

A definition of x at n1
reaches n2 if and only if
there is a path between n1
and n2 that does not
contain a definition of x

Reaches
nodes 2, 3,
4, 5, 6, 7,
8, but not
9, 10

Testing2-11, CS431 F06, BG Ryder/A Rountev 18

Def-Use Pairs

• A def-use (DU) pair for variable x is a
pair of nodes (n1,n2) such that
– x is in DEF(n1)
– the definition of x at n1 reaches n2
– x is in USE(n2)

• The value that is assigned to x at n1 is
used at n2
– Since the definition reaches n2, along
some path n1…n2 the value is not “killed”

10

Testing2-11, CS431 F06, BG Ryder/A Rountev 19

Example of Def-Use Pairs

21 3

9
8

6
7

10

5

4

DEF(1)={s} USE(1)=∅
DEF(2)={x} USE(2)=∅
DEF(3)=∅ USE(3)={x,y}
DEF(4)={x} USE(4)={x}
DEF(5)={y} USE(5)={y}
DEF(6)=∅ USE(6)={x,y}
DEF(7)={s} USE(7)={s,x,y}
DEF(8)={s} USE(8)={s,x,y}

Reaches nodes 2, 3, 4, 5,
6, 7, 8, but not 9, 10

For defn
of s at 1,
two DU
pairs
1-71-7, 1-81-8

Testing2-11, CS431 F06, BG Ryder/A Rountev 20

Dataflow-based Testing

• Identify all DU pairs and construct
test cases that cover these pairs
– Variations with different “strength”

• All-DU-paths: for each DU pair
(n1,n2) for x, exercise all possible
paths n1…n2 that are clear of
definitions of x

• All-uses: for each DU pair (n1,n2) for
x, exercise at least one path n1…n2
that is clear of definitions of x

11

Testing2-11, CS431 F06, BG Ryder/A Rountev 21

Dataflow-based Testing

• All-defs: for each definition, cover at least
one DU pair for that definition
– i.e., if x is defined at n1, execute at least one

path n1…n2 such that x is in USE(n2) and the
path is clear of definitions of x

• All-defs <<(subsumes) all-uses << all DU-paths
• Motivation: see the effects of using the

values produced by computations
– Focuses on the data, while control-flow-based

testing focuses on the control

Testing2-11, CS431 F06, BG Ryder/A Rountev 22

Dataflow-based Testing

• Best criteria (?): all-paths
– Select data that traverses all paths in a

program, but possible problems:
• Data causing execution to traverse a path, may not

reveal an error on that path
• There may be an infinite number of paths due to loops

• Rapps & Weyuker 1985 contribution
– Designed a family of test data selection criteria

so finite number of paths traversed
– Systematic exploration of satisfying the criteria
– Coverage criteria can be automatically checked

S. Rapps, E. Weyuker, “Selecting Software Test Data
Using Data Flow Information, IEEE TSE, April 1985,
pp 367-375.

12

Testing2-11, CS431 F06, BG Ryder/A Rountev 23

Black-box Testing
• Unlike white-box testing: don’t use any
knowledge about the internals of the
code

• Test cases are designed based on
specifications

• Test of expected behavior

• Example: search for a value in an array
– Postcondition: return value is the index of
some occurrence of the value, or -1 if the
value does not occur in the array

Testing2-11, CS431 F06, BG Ryder/A Rountev 24

Equivalence Partitioning

• Consider input/output domains and partition
them into equivalence classes
– For different values from the same class, the

software should behave equivalently
• Test values from each class

– For input range 2..5: “less than 2”, “between 2
and 5”, and “greater than 5”

• Testing with values from different classes is
more likely to find errors than testing with
values from the same class

13

Testing2-11, CS431 F06, BG Ryder/A Rountev 25

Equivalence Classes

• Examples
– Input x in range [a..b]: three classes
“x<a”, “a<=x<=b”, “b<x”

– Boolean: classes true and false
– Some classes may represent invalid inputinvalid input

• Choosing test values
– Choose a typical value in the middle of the
class(es) that represent valid input

– Choose values at the boundaries of classes
• e.g. for [a..b], use a-1, a, a+1, b-1, b, b+1

Testing2-11, CS431 F06, BG Ryder/A Rountev 26

Example

• Spec says that the code accepts between 4
and 24 inputs; each is a 3-digit integer

• One partition: number of inputs
– Classes “x<4”, “4<=x<=24”, “24<x”
– Chosen values: 3,4,5,14,23,24,25

• Another partition: integer values
– Classes: “x<100”, “100<=x<=999”, “999<x”
– Chosen values: 99,100,101,500,998,999,1000

14

Testing2-11, CS431 F06, BG Ryder/A Rountev 27

Another Example

• Similarly for the output: exercise
boundary values

• Spec: the output is between 3 and 6
integers, each in the range 1000-2500

• Try to design inputs that produce
– 3 outputs with value 1000
– 3 outputs with value 2500
– 6 outputs with value 1000
– 6 outputs with value 2500

Testing2-11, CS431 F06, BG Ryder/A Rountev 28

Example: Searching

• Search for a value in an array
– Return: index of some occurrence of the value, or

-1 if the value does not occur
• One partition: size of the array

– Programmer errors are often made for size 1: a
separate equivalence class

– Classes: “empty array”, “array with one element”,
“array with many elements”

• Another partition: location of the value
– “first element”, “last element”, “middle element”,

“not found”

15

Testing2-11, CS431 F06, BG Ryder/A Rountev 29

Example: Searching
Array Value Output
empty 5 -1
 [7] 7 0
 [7] 2 -1
[1,6,4,7,2] 1 0
[1,6,4,7,2] 4 2
[1,6,4,7,2] 2 4
[1,6,4,7,2] 3 -1

Testing2-11, CS431 F06, BG Ryder/A Rountev 30

Object-Oriented Software

• Initially hoped it would be easier to
test OO software than procedural
software
– Soon became clear that this is not true

• Some of the older testing techniques
are still useful

• New testing techniques are designed
specifically for OO software

16

Testing2-11, CS431 F06, BG Ryder/A Rountev 31

One Difference: Unit Testing

• Traditional view of “unit”: a procedure
• In OO: a method is similar to a procedure
• But a method is part of a class, and is

tightly coupled with other methods and fields
in the class

• The smallest testable unit is a class
– It doesn’t make sense to test a method as a

separate entity
• Unit testing in OO = class testing

Testing2-11, CS431 F06, BG Ryder/A Rountev 32

Class Testing

• Traditional black-box and white-box
techniques still apply
– E.g. testing with boundary values
– Inside each method:

• Obtain at least 100% branch coverage;
• Cover all DU-pairs inside a method (intra-
method)

– DU pairs that cross method boundaries
(inter-method)
• Example: inside method m1, field f is assigned
a value; inside method m2, this value is read

17

Testing2-11, CS431 F06, BG Ryder/A Rountev 33

Example: Inter-method DU Pairs
class A {
 private int index;

public void m1() {
 index = …;
 …

 m2();
}
private void m2() { … x = index; … }
public void m3() { … z = index; … }

}
test 1: call m1, which writes index and then
calls m2 which reads the value of index
test 2: call m1, and then call m3

Testing2-11, CS431 F06, BG Ryder/A Rountev 34

Possible Test Suite
public class MainDriver {
 public static void main(String[] args) {

A a = new A();
…
a.m1();
a.m3();

 …
}

Note: need to ensure that the actual execution
exercises definition-free paths for each of the
two DU pairs

18

Testing2-11, CS431 F06, BG Ryder/A Rountev 35

Class Testing

• Also try to test all sequences of calls
to public methods of A, that a client
of A could invoke (intra-class)

• Want to discover more DU edges to test, that
can be setup by this sort of sequence of calls

• Q: What about overriding subclass
methods? How do they get tested?

Testing2-11, CS431 F06, BG Ryder/A Rountev 36

Polymorphism

• Example: class A with subclasses B and C
– class A { … void m() {…} …}
– class B extends A { … }
– class C extends A { … void m() {…} … }

• Suppose inside class X there is call a.m(),
where variable a is of type A
– Could potentially send message m() to an instance

of A, instance of B, or instance of C
– The invoked method could be A.m or C.m

19

Testing2-11, CS431 F06, BG Ryder/A Rountev 37

Testing of Polymorphism

• During class testing of X: “drive” call site
a.m() through all possible bindings

• All-receiver-classes: execute with at least
one receiver of class A, at least one
receiver of class B, and at least one
receiver of class C

• All-invoked-methods: need to execute with
receivers that cover A.m and C.m
– i.e. (A or B receiver) and (C receiver)

• Q: How can we figure out the possible
method targets?

Testing2-11, CS431 F06, BG Ryder/A Rountev 38

Compile-time Analysis

• Class Hierarchy Analysis (CHA)
• Use knowledge of type hierarchy to
figure out possible method targets at a
call site a.f()

• Know all subclasses of a class A, when a
declared to be an A object

• Know all methods defined in those subclasses
with same method signature f()

• Refinement: also might collect info on which
classes are actually instantiated (RTA) so don’t
over-expand call graph

20

Testing2-11, CS431 F06, BG Ryder/A Rountev 39

Example

static void main(){
B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

cf Frank Tip, OOPSLA’00

A

B

C D

Testing2-11, CS431 F06, BG Ryder/A Rountev 40

CHA Example

static void main(){
B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}

static void g(B b2){
B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

cf Frank Tip, OOPSLA’00

Cone(Declared_type(receiver))

A

B

C D

21

Testing2-11, CS431 F06, BG Ryder/A Rountev 41

CHA Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}

class C extends B{
foo() {…}

}
class D extends B{

foo(){…}
}

main

A.foo() B.foo() C.foo() D.foo()

f(A) g(B)

Call Graph

All-Receiver-class coverage
requires that we cover each
possible receiver type at call in f().

All-invoked-method coverage
requires that we cover each
outgoing edge from the call in f().

Testing2-11, CS431 F06, BG Ryder/A Rountev 42

RTA Example

static void main(){
B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}

static void g(B b2){
B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

cf Frank Tip, OOPSLA’00

A

B

C D

22

Testing2-11, CS431 F06, BG Ryder/A Rountev 43

RTA Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}

class B extends A{
foo() {…}

}
class C extends B{

foo() {…}
}

class D extends B{
foo(){…}

}

main

A.foo() B.foo() C.foo() D.foo()

f(A) g(B)

Call Graph

