Testing3

State-based testing
Inheritance

Testing interacting classes
- Communication diagrams

- Object relation graph (ORD)
* Regression testing

* GUI Testing

Testing3-11, €S431, Fall 2006, B6 Ryder/A Rountev

State-based Testing

* Natural representation with finite-
state machines

- States correspond to certain values of
the attributes

- Transitions correspond to methods
- FSM can be used as basis for testing

- e.g. "drive” the class through all
transitions, and verify the response and
the resulting state

Testing3-11, €S431, Fall 2006, B6 Ryder/A Rountev

Example: Stack

+ States
- Initial: before creation
- Empty: number of elements = O
- Holding: number of elements >0, but less than the max
capacity
- Full: number elements = max
- Final: after destruction

+ Transitions: starting state, ending state, action
that triggers the transition, and possibly some
response to the action

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev

Examples of Transitions

Initial -> Empty: action = “create”
- e.g. "s = new Stack()" in Java
Empty -> Holding: action = “add"”
Empty -> Full: action = “add”

- if max_capacity = 1

Empty -> Final: action = “destroy”

- e.g. destructor call in C++, garbage
collection in Java

* Holding -> Empty: action = “delete”

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev

Finite State Machine for a Stack

Initial
create add delete
Empty |.——29d Holding |

delete

delete

destro

Final |

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev

FSM-based Testing

- Each valid transition should be tested

- Verify the resulting state using a state
inspector that has access to the internals
of the class

* Each invalid transition should be
tested to ensure that it is rejected
and the state does not change

- e.g. Full -> Full is not allowed: we should
call add on a full stack

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev

Example 2

+ 6umball machine from our State pattern
- States: NoQuarter, HasQuarter, Sold, SoldOut
+ Transitions: turnCrank(), addQuarter(), takeGumball(), halt()

q takeGumball
_addQuarter,
I NoQuarter HasQuarter Wnk
turnCrank CF Sold
dQuarter turnCran
/@mball
turnCrank
addQuarter Notice our FSM is
Testing3-11, CS431, Fall 2006, B& Ryder/A Rountev non-deterministic 7
Inheritance

- People thought that inheritance will
reduce the need for testing
- Claim 1: "If we have a well-tested
superclass, we can reuse its code (in

subclasses, through inheritance) without
retesting inherited code”

- Claim 2: "A good-quality test suite used
for a superclass will also be good for a
subclass”

* Both claims are wrong

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev

Problems with Inheritance

* Incorrect initialization of superclass
attributes by the subclass

* Missing overriding methods
- Typical example: equals and clone

- Direct access to superclass fields from the
subclass code

- Can create subtle side effects that break
unsuspecting superclass methods

- A subclass violates an invariant from the
superclass, or creates an invalid state

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev

Testing of Inheritance

* Principle: inherited methods should be
retested in the context of a subclass

- Example 1: if we change some method m()
in a superclass, we need to retest m()
inside all subclasses that inherit it

- Example 2: if we add or change a subclass,
we need to retest all methods inherited
from a superclass in the context of the
new/changed subclass

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev

Example
class A {
protected int x: // invariant: x > 100
void m() { // correctness depends on
// the invariant ..} ..}
class B extends A {
voidmlO){x=1; .} .}

* If ml has a bug and breaks the
invariant, m is incorrect in the context
of B, even though it is correct in A

- Therefore m should be retested on B

objects
Another Example
class A {
void m() { ... -}

voidm2 { ..} ..}
class B extends A {
void m20) { .. } .. }

- If inside B we override a method from A,

this indirectly affects other methods
inherited from A

- e.g. m now calls B.m2, not Am2: so, we cannot
be sure that m is correct anymore and we need
to retest it with a B receiver

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev

Testing of Inheritance

* Test cases for a method m defined in
class X are not necessarily good for
retesting m in subclasses of X

- e.g., if m calls m2 in A, and then some
subclass overrides m2, we have a
completely new interaction

- Still, it is essential to run all
superclass tests on a subclass

- Goal: check behavioral conformance of
the subclass w.r.t. the superclass (LSP)

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev

Testing of Interacting Classes

* Until now we only talked about testing of
individual classes
* Class testing is not sufficient
- OO design: several classes collaborate to
implement the desired functionality
- A variety of methods for interaction testing

- Consider testing based on UML interaction
diagrams

- Can also think about ordering the class-based
testing using 'uses’ hierarchy

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev

UML Interaction Diagrams for Testing

* UML interaction diagrams: sequences of
messages among a set of objects
- There may be several diagrams showing
different variations of the interaction
* Basic idea: run tests that cover all
diagrams, and all messages and
conditions inside each diagram

- If a diagram does not have conditions and
iteration, it contains only one path

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev 15

Communication Diagram

yprepare()
:Order 1.2.1:needsReorder:=
1*[all order lines]: needToReorder()
* *prepar‘e()
[
:OrderLine "1.1:hasStock:=check() » :StockItem

1.2[hasStock]:remove() >
v|1.3[hasStock]:
create() 1.2.2[needsReorder]:create()

:DeliveryItem :ReorderItem

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev 16

Coverage Requirements

* Run enough tests to cover all messages and
conditions
- test with O loop iterations and >=1 iterations
- test with hasStock=true and hasStock=false
- test with needsReorder=true and needsReorder=false

+ To cover each one: pick a particular path in
the diagram and “drive” the objects through

that path

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev 17

Object Relation Diagram

* ORD represents relationships between classes

* Inheritance
- Aggregation - describes relation between an aggregate
object and its constituent parts

- Objects of class B declared as instance or static fields of
class A

- Objects of class B dynamically created by methods in A
+ Association - 2 independent classes associate with each
other (e.g., data or control dependence, message passing)
- Class A uses data members of class B
- Class B's methods are invoked by a method in class A
- Class B's objects are formal parameters of a method in A

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev 18

Examples - ATM

Inheritance

Withdrawal, Deposit, CheckBalance all inherit from
CustomerTransactions

- Aggregation
- ATMSession contains ref to Account

- ATMSessionHandler contains ref to ATMSession

- ATMSession creates instances of Withdrawal, Deposit,
CheckBalance

* Association
- CheckBalance, Deposit, Withdrawal all call Account
- Account and CustomerTransactions use Money parameters

And probably more

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev

Regression Testing

* Keep a set of test cases, used to test program
after substantial change

- Test case - program input and expected output
- Test suite - set of test cases
- Adequacy is assessed by coverage metrics
(usually branches or statements covered)
- P' a modified version of P, T test suite,
info about testing P with T are available
during regression testing of P’

- Regression test selection problem - What to
retest from T?

- Test suite augmentation problem - What new
tests are needed?

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev

20

10

Selective Regression Testing

* Only need to rerun tests which might be
affected by program changes
* Requires tool support for analysus
* Need to know which tests ‘cover’ which
edges/nodes in CFG

* Need to know where the original P and edited
program P' CFGs first differ on paths from
method entry

- Idea: do parallel traversal of CFG(P) and
CFG(P'): when targets of like-labeled edges
differed, then use coverage matrix to find tests
that will exercise that edge

- Q: Does this approach scale?

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev 21

GUI Testing

|P. Gerrard, "Testing GUL Apps”,EuroSTAR'97

- Forms-based interfaces
+ Hierarchical
* One-at-a-time
- Sometimes in tabbed order

- 6UIs

+ Allow multiple windows at once

- Allow access thru; menu bars, buttons,
keyboard short-cuts

* No order constraints

* User free to access system functionality in
their own preferred manner

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev 2

11

GUI Testing - Difficulties

* Challenges:

- Event-driven system
- Too many possible user inputs

- Hard to anticipate context in which event handlers
execute

- Unsolicited events can occur
- OO with large number of objects

- Hidden synchronization and dependences
- Many times objects depend on one another

- E.g., if user selects check box then a text field is
made invisible

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev

23

GUTI Testing -- Difficulties

* Challenges, cont.

- Infinite input domain
- User can click anywhere on screen and enter data
in any order
- Many ways in and out

- Many 'ways in' to reach the same point in
application; do all need testing?

- Many ‘'ways out’ by using keyboard shortcuts,
mouse, function keys: do all need testing?
- Window management

- Do we need to test O/S handling of window
behavior (e.g., resizing, closing); which ‘normal’
window controls need testing?

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev

24

12

Testing Strategies

Oriented towards black-box testing

* Focus on categorizing errors into types
- Test each type, thus adopting a divide and

* Reuse traditional black-box testing of forms
input, where possible

conquer approach

- Test in stages
+ Test lowest levels of detail first, then integrate

Testing3-11,

components and test, then integrate entire application

and tests

* Build testing in trusted layers

CS431, Fall 2006, BG Ryder/A Rountev

Automate wherever possible

25

Kinds of GUI Errors

|P. Gerrard, "Testing GUL Apps”,EuroSTAR'97

Data validation

Incorrect field defaults

Mis-handling of server process failures
Mandatory fields, not mandatory
Wrong fields retrieved by queries
Incorrect search criteria

Field order

Multiple database rows returned, single
row expected

Currency of data on screens
Window object/DB field correspondence

e Correct window modality?

Window system commands not
available/don't work

Control state alignment with state of
data in window?

Focus on objects needing it?

e Menu options align with state of data or

application mode?

Action of menu commands aligns with
state of data in window
Synchronisation of window object
content

State of controls aligns with state of
data in window?

Testing3-11,

C€S431, Fall 2006, BG Ryder/A Rountev

26

13

GUI Testing Stages

Low-level (~unit)
+ Checklist

* Navigation (regs application backbone to simulate calls
to window under test: window to invoke WUT; windows
to be invoked by WUT

Application(~unit or func-system test)
- Focus on behavior of objects w/i windows-
traditional techniques)
« Equivalence partitioning and boundary value analysis

- Decision tables
+ State transition testing

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev 27

GUI Testing Stages

* Integration (func-syst test)

* Interesting Q's: Dialogue vs 1 direct call? Info passed
in 1 dirn or both dirns? Is call context-sensitive? Are
there diff message types?

* Kinds: Client/Server communication; Synchronization)

* Non-functional (non-func-syst test)

- Soak tests - exercise app for long time to see
memory-leak type errors

+ Compatibility - exercise app, switch to other apps,
switch back - looks for resource problems

* Platform configuration/environment

Testing3-11, €S431, Fall 2006, BG Ryder/A Rountev 28

14

