
1

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 1

Testing3

• State-based testing
• Inheritance
• Testing interacting classes

– Communication diagrams
– Object relation graph (ORD)

• Regression testing
• GUI Testing

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 2

State-based Testing

• Natural representation with finite-
state machines
– States correspond to certain values of
the attributes

– Transitions correspond to methods
• FSM can be used as basis for testing

– e.g. “drive” the class through all
transitions, and verify the response and
the resulting state

2

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 3

Example: Stack

• States
– Initial: before creation
– Empty: number of elements = 0
– Holding: number of elements >0, but less than the max

capacity
– Full: number elements = max
– Final: after destruction

• Transitions: starting state, ending state, action
that triggers the transition, and possibly some
response to the action

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 4

Examples of Transitions

• Initial -> Empty: action = “create”
– e.g. “s = new Stack()” in Java

• Empty -> Holding: action = “add”
• Empty -> Full: action = “add”

– if max_capacity = 1
• Empty -> Final: action = “destroy”

– e.g. destructor call in C++, garbage
collection in Java

• Holding -> Empty: action = “delete”

3

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 5

Finite State Machine for a Stack

Initial

Empty Holding

 Full Final

create
add

adddestroy

delete

add,delete

add

destroy
destroy

delete
delete

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 6

FSM-based Testing

• Each valid transition should be tested
– Verify the resulting state using a state
inspector that has access to the internals
of the class

• Each invalid transition should be
tested to ensure that it is rejected
and the state does not change
– e.g. Full -> Full is not allowed: we should
call add on a full stack

4

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 7

Example 2
• Gumball machine from our State pattern

• States: NoQuarter, HasQuarter, Sold, SoldOut
• Transitions: turnCrank(), addQuarter(), takeGumball(), halt()

NoQuarter HasQuarter

Sold

SoldOutError

addQuarter
turnCrank

turnCrank

turnCrank

turnCrank

Notice our FSM is
non-deterministic

addQuarter

addQuarter

takeGumball

takeGumball

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 8

Inheritance

• People thought that inheritance will
reduce the need for testing
– Claim 1: “If we have a well-tested
superclass, we can reuse its code (in
subclasses, through inheritance) without
retesting inherited code”

– Claim 2: “A good-quality test suite used
for a superclass will also be good for a
subclass”

• Both claims are wrong

5

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 9

Problems with Inheritance

• Incorrect initialization of superclass
attributes by the subclass

• Missing overriding methods
– Typical example: equals and clone

• Direct access to superclass fields from the
subclass code
– Can create subtle side effects that break

unsuspecting superclass methods
• A subclass violates an invariant from the

superclass, or creates an invalid state

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 10

Testing of Inheritance

• Principle: inherited methods should be
retested in the context of a subclass

• Example 1: if we change some method m()
in a superclass, we need to retest m()
inside all subclasses that inherit it

• Example 2: if we add or change a subclass,
we need to retest all methods inherited
from a superclass in the context of the
new/changed subclass

6

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 11

Example
class A {
 protected int x; // invariant: x > 100
 void m() { // correctness depends on
 // the invariant … } … }
class B extends A {
 void m1() { x = 1; … } … }

• If m1 has a bug and breaks the
invariant, m is incorrect in the context
of B, even though it is correct in A
– Therefore m should be retested on B

objects

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 12

Another Example

• If inside B we override a method from A,
this indirectly affects other methods
inherited from A
– e.g. m now calls B.m2, not A.m2: so, we cannot

be sure that m is correct anymore and we need
to retest it with a B receiver

class A {
 void m() { … m2(); … }
 void m2 { … } … }
class B extends A {
 void m2() { … } … }

7

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 13

Testing of Inheritance

• Test cases for a method m defined in
class X are not necessarily good for
retesting m in subclasses of X
– e.g., if m calls m2 in A, and then some
subclass overrides m2, we have a
completely new interaction

• Still, it is essential to run all
superclass tests on a subclass
– Goal: check behavioral conformance of
the subclass w.r.t. the superclass (LSP)

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 14

Testing of Interacting Classes

• Until now we only talked about testing of
individual classes

• Class testing is not sufficient
– OO design: several classes collaborate to

implement the desired functionality
• A variety of methods for interaction testing

– Consider testing based on UML interaction
diagrams

– Can also think about ordering the class-based
testing using ‘uses’ hierarchy

8

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 15

UML Interaction Diagrams for Testing

• UML interaction diagrams: sequences of
messages among a set of objects
– There may be several diagrams showing
different variations of the interaction

• Basic idea: run tests that cover all
diagrams, and all messages and
conditions inside each diagram
– If a diagram does not have conditions and
iteration, it contains only one path

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 16

Communication Diagram

 :Order

 :OrderLine

 :DeliveryItem

 :StockItem

 :ReorderItem

prepare()

1*[all order lines]:
prepare()

1.1:hasStock:=check()
1.2[hasStock]:remove()

1.2.1:needsReorder:=
 needToReorder()

1.2.2[needsReorder]:create()
1.3[hasStock]:
create()

*

9

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 17

Coverage Requirements

• Run enough tests to cover all messages and
conditions
– test with 0 loop iterations and >=1 iterations
– test with hasStock=true and hasStock=false
– test with needsReorder=true and needsReorder=false

• To cover each one: pick a particular path in
the diagram and “drive” the objects through
that path

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 18

Object Relation Diagram

• ORD represents relationships between classes
• Inheritance
• Aggregation - describes relation between an aggregate

object and its constituent parts
– Objects of class B declared as instance or static fields of

class A
– Objects of class B dynamically created by methods in A

• Association - 2 independent classes associate with each
other (e.g., data or control dependence, message passing)

– Class A uses data members of class B
– Class B’s methods are invoked by a method in class A
– Class B’s objects are formal parameters of a method in A

10

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 19

Examples - ATM

• Inheritance
Withdrawal, Deposit, CheckBalance all inherit from

CustomerTransactions

• Aggregation
– ATMSession contains ref to Account
– ATMSessionHandler contains ref to ATMSession
– ATMSession creates instances of Withdrawal, Deposit,

CheckBalance

• Association
– CheckBalance, Deposit, Withdrawal all call Account
– Account and CustomerTransactions use Money parameters

• And probably more

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 20

Regression Testing
• Keep a set of test cases, used to test program

after substantial change
– Test case - program input and expected output
– Test suite - set of test cases
– Adequacy is assessed by coverage metrics

(usually branches or statements covered)
• P’ a modified version of P, T test suite,

info about testing P with T are available
during regression testing of P’
– Regression test selection problem - What to

retest from T?
– Test suite augmentation problem - What new

tests are needed?

11

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 21

Selective Regression Testing

• Only need to rerun tests which might be
affected by program changes

• Requires tool support for analysis
• Need to know which tests ‘cover’ which
edges/nodes in CFG

• Need to know where the original P and edited
program P’ CFGs first differ on paths from
method entry

– Idea: do parallel traversal of CFG(P) and
CFG(P’); when targets of like-labeled edges
differed, then use coverage matrix to find tests
that will exercise that edge

– Q: Does this approach scale?

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 22

GUI Testing

• Forms-based interfaces
• Hierarchical
• One-at-a-time
• Sometimes in tabbed order

• GUIs
• Allow multiple windows at once
• Allow access thru; menu bars, buttons,
keyboard short-cuts

• No order constraints
• User free to access system functionality in
their own preferred manner

P. Gerrard, “Testing GUI Apps”,EuroSTAR’97

12

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 23

GUI Testing - Difficulties

• Challenges:
– Event-driven system

– Too many possible user inputs
– Hard to anticipate context in which event handlers

execute
– Unsolicited events can occur
– OO with large number of objects
– Hidden synchronization and dependences

– Many times objects depend on one another
– E.g., if user selects check box then a text field is

made invisible

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 24

GUI Testing -- Difficulties
• Challenges, cont.

– Infinite input domain
– User can click anywhere on screen and enter data

in any order
– Many ways in and out

– Many ‘ways in’ to reach the same point in
application; do all need testing?

– Many ‘ways out’ by using keyboard shortcuts,
mouse, function keys; do all need testing?

– Window management
– Do we need to test O/S handling of window

behavior (e.g., resizing, closing); which ‘normal’
window controls need testing?

13

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 25

Testing Strategies
• Oriented towards black-box testing
• Focus on categorizing errors into types

– Test each type, thus adopting a divide and
conquer approach

• Reuse traditional black-box testing of forms
input, where possible

• Test in stages
• Test lowest levels of detail first, then integrate

components and test, then integrate entire application
and tests

• Build testing in trusted layers
• Automate wherever possible

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 26

Kinds of GUI Errors
P. Gerrard, “Testing GUI Apps”,EuroSTAR’97

14

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 27

GUI Testing Stages

• Low-level (~unit)
• Checklist
• Navigation (reqs application backbone to simulate calls

to window under test; window to invoke WUT; windows
to be invoked by WUT

• Application(~unit or func-system test)
– Focus on behavior of objects w/i windows-

traditional techniques)
• Equivalence partitioning and boundary value analysis
• Decision tables
• State transition testing

Testing3-11, CS431, Fall 2006, BG Ryder/A Rountev 28

GUI Testing Stages

• Integration (func-syst test)
• Interesting Q’s: Dialogue vs 1 direct call? Info passed

in 1 dirn or both dirns? Is call context-sensitive? Are
there diff message types?

• Kinds: Client/Server communication; Synchronization)

• Non-functional (non-func-syst test)
• Soak tests - exercise app for long time to see

memory-leak type errors
• Compatibility - exercise app, switch to other apps,

switch back - looks for resource problems
• Platform configuration/environment

