Lambda Calculus

e A formalism for describing the semantics of
operations in functional programming
languages

e Variables (free or bound), function definition
(or abstraction), function application,
currying

e Substitution rules

B reduction, a reduction, n-reduction

Normal form

Lambda Calculus © BGR, Fall05

Lambda Calculus

e Church-Rosser theorem
e Evaluation order

— Call-by-name

— Call-by-value

— Call-by-need (lazy)

Lambda Calculus © BGR, Fall05 2



Lambda Calculus

e Universal theory of functions

e A-calculus (Church), recursive function
theory (Kleene), Turing machines (Turing)
all were formal systems to describe
computation, developed at the same time in
the 1930’s
— Shown formally equivalent to each other
— Results from one, apply to others

Lambda Calculus © BGR, Fall05 3

Lambda Calculus

e Conjecture: class of programs written in A-
calculus is equivalent to those which can be
simulated on Turing machines.

e All partial recursive functions can be defined
in A-calculus.

e Pure A-calculus involves functions with no
side effects and no types.

Lambda Calculus © BGR, Fall05 4



Lambda Calculus

e Function: a map from a domain to a range

e Terms:
— variable (X)
— function abstraction or definition (Ax.M)

— function application (M N)

Lambda Calculus © BGR, Fall05

Function Definition
(Abstraction)

F(y) =2 +y -- mathematics

F= Ay.2+y-- A calculus
— bound variable or argument

— function body
e A x.Xx (identity function)
e AYy.2 (constant function whose value is 2)

Lambda Calculus © BGR, Fall05



Function Application

e Process: take the argument and substitute it
everywhere in the function body for the
parameter

F 3)is2+3=5; ((Axx) Ay.2)isAy.2;
(A z.z45) 3)is 3+5=8

e Functions are first class citizens

1. Can be returned as a value

2. Can be passed as an argument

3. Can be put into a data structure as a value
4. Can be the value of an expression

Lambda Calculus © BGR, Fall05 7

Relation to C Function Pointers

e Can simulate #1-4 with C function pointers,
but this abstraction is closer to the machine
than a function abstraction.

e Functions as values are defined more cleanly
in Lisp or SML.

e No analogue in C for an unnamed function,
(Lisp lambda expression)

Lambda Calculus © BGR, Fall05 8



Function Application

Left associative operator- (f g h) is ((f g) h)
Ax.Mx is same as A x.(M x)
Function application has highest precedence

Currying (cf. Haskell Curry)
Area of triangle is A b. A h.(b*h)/2

(Area 3) is a function, A h.(3*h)/2, that
describes the area of a family of triangles all
with base 3

((Area 3) 7)=3*7/2=10.5

in curried form, a function takes its arguments
one-by-one

Lambda Calculus © BGR, Fall05 9

Type Signatures

e Area: can write function in two ways
— un-curried: a * g — y, given b, h as a pair of
values, the function returns area

— curried: o — (f — v), given b, returns a
function to calculate area when given h(height)

Lambda Calculus © BGR, Fall05 10



Free and Bound Variables

* Bound variable: x is bound when there is a
corresponding Ax in front of the A expression:

((Ay.y) y) isy
bound free

e Free variable: x is not bound (analogous to a
variable inherited from an encompassing
imperative scope)

binding occurrence of z | Pound occurrence of z

(A y/.‘Z) Az Z)V\/

free occurrence of z

Lambda Calculus © BGR, Fall05 11

Free and Bound Variables

Sethi, pS50

X IS free In X, free(x) = x

X is free (bound) in Y Z. if x is free (bound) in
Y or in Z, free(YZ)= free(Y) U free(Z)
x €V, then x free (bound) in AV.Y iff it

occurs free (bound) in Y. All occurrences of
elements of V are boundin A V.Y,
free(Ax.M) = free(M) - {x}

X free (bound) in (Y), if x is free (bound) in Y

Lambda Calculus © BGR, Fall05 12



Substitution

e Idea: function application is seen as a kind of
substitution which simplifies a term
— ((AMx.M) N) as substituting N for x in M ; written
as{NIx} M
* Rules - Sethi, p551

1. If free variables of N have no bound occurrences
in M, then {N | x} M formed by replacing all free
occurrences of x in M by N.

Lambda Calculus © BGR, Fall05 13

Substitution

plus = Aa.Ab. a+b
then (plus 2) = Ab. 2+b but if we evaluate (plus b 3) we get

into trouble!

(plusb3)  =(AaAb.a+b b 3) problem:
b is a bound
= (Ab. b+b 3) variable; need
=3+3=6 to rename before
(plus b 3) = (Aa.Ac.at+c b 3) substitute.
= (Ac. b+c 3)

= b + 3, what we expected!

Lambda Calculus © BGR, Fall05 14



Substitution

2. If variable y free in N and bound in M, replace
binding and bound occurrences of y by a new
variable named z. Repeat until case 1. applies.

 Examples
{ulx}x =u {ulx}(x u) =(u v
{AxxIx}x=Axx {ulx}y =y
{ul x} Ax.x = AXx.X

{ll | X} ()\ll.X) = {ll ! X} O\'Z'X) =Az.u Examples of need for
{ll | X} O\.u.u) = {u | X} O\.Z.Z) = )\z.z change of variables.

Lambda Calculus © BGR, Fall05 15

Reductions

B-reduction (Ax.M) N = {N | x} M with above
rules

e o~-reduction (Ax.M) = Az.{z | x} M, if z not free
in M (allows change of bound variable names)

e m-reduction (A x.(M x)) =M, if x not free in M
(allows stripping off of layers of indirection in
function application)

e See Sethi, Figure 14.1, p 553 for rules about -
equality of terms

Lambda Calculus © BGR, Fall05 16



Example

Evaluate (Axyz . xz (yz)) (AX. X) (Ay.y)
(Axyz . (xz (yz))) (Ax. X) (AY. V), 2 a-reds + fully parenthesize
=[{(Aabz.(az(bz))) (Ax .x)} (Ay .y)]

=[{(Abz. (Ax.x) z (b z))) } (\y .y)], {Mxx|a}

= [ { Abz. ((Ax.x) z) (b z))} (Ay .V)], fully parenthesize

= [{Abz. (z (b 2))} (Ly .y)], {z | x}

=[{Az. (z (\y .y) 2))}], {hy.y I b}

= {(Mz.z 2)}, {z|y}

e Note: we picked the order of B-reductions here

Lambda Calculus © BGR, Fall05

Substitution Rules «sei p 555, GHH p 49

M {NIx}M
X N
y M

if M a variable, then if M = x get M, else get N (3.1 GHH)

PQ {NIx}P{NIx}Q

result of substitution applied to function application is
to apply that substitution to the function and its
argument and then perform the resulting
application(3.2 GHH)

Lambda Calculus © BGR, Fall05



Substitution Rules «sei p 555, GHH p 49

M {NIx}M
3.3a) Ax.P Ax P

never substitute for a bound variable within its scope
3.3b) Ay.P Ay .P
if there are no free occurrences of x in P

3.3c) Ay .P Ay {NIx} P
when there are no free occurrences of y in N
3.3d) Ay .P A ANIx}{zly}P

when there is a free occurrence of y in N and 7 is not
free in P or N, substitute 7 for y in P and continue.

Lambda Calculus © BGR, Fall05 19

Substitution Rules

* All these checks are aimed at ensuring that we
don’t link variable occurrences that are
independent!

e Our example ((A a.A b.a+b) b), would use 3.3d
to change variables before doing the
substitution

e Normal form of a term - a form which can
allow no further B or n reductions

— No remaining ((Ax.M) N), called a redex or
term which can be reduced

Lambda Calculus © BGR, Fall05 20



Example GHH, p50

{yIx} Ny.xy use3.3d to change bound var

Az.{yIx} {zly} (x y)) apply 3.2 for fcn appln
Az.{ylx}{zly} (x) {zly}(y)) apply 3.1 twice
Az.{y | x} (x z)apply 3.2

Az. {yIx} x){y|x} (z)) apply 3.1 twice
Nz.yz final result;

compare this to what we started with!

Lambda Calculus © BGR, Fall05 21

Church Rosser Property

e Fundamental result of A-calculus:

— Result of a computation is independent of the
order in which B-reductions are applied

— Leads to referential transparency in functional
PL’s

— Another interpretation is that most terms in the A
-calculus have a normal form, a form that cannot
be reduced any simpler; Church Rosser says if a

normal form exists, then all reduction sequences
lead to it

Lambda Calculus © BGR, Fall05 22



Normal Form

* Does every A-expression have a normal form? NO,
because there are terms which cannot be simplified,
yet they contain redices

— (Axx x) (Ax.x x) =(Ay.yYy) (Ax.X X) , a-reduction
= (Ax.X X) (AX.X X), B-reduction
this term has no normal form
—(Axxxx) (Axxxx)=(Ay.YyYy) (AxxxXx), o-red
= (AX.X X X) (AX.X X X) (AX.X X X),B-red
this term grows as we apply B-reductions!

Lambda Calculus © BGR, Fall05 23

Normal Form

— If addé6 = Ax. x+6, twice = AMfAXx. f (f x), what is
value of (twice add6)?

(twice add6) = (AMf.Az.f (fz)) (Ax.x+6)
= Mz. ((Ax.x+6) ((Ax.x+6) z))
= M. ((AX.X+6) (z+6))
= Az. (z + 12), normal form
— normal form of {Ax. ((Az.z x) (Ax.x))} y?
Ox. (022 %) Axx))} Y = x. (Wx.x) xﬂ{ bound
= {AX. X}y

=Yy

Lambda Calculus © BGR, Fall05 24

free



Equality of Terms

e Reduce each term to its normal form and
compare

e But whether or not a term has a normal form
is undecidable (related to halting problem for
Turing machies)

e Same term may have terminating and
nonterminating f-reduction sequences; if at
least one terminates, use its result as the
normal form for that term

Lambda Calculus © BGR, Fall05 25

Church Rosser Property

e (GHH)Theorem 1: If a A-expression reduces to a
normal form, it is unique

e (GHH)Theorem 2: If we always reduce leftmost
redex first, the reduction sequence will terminate in
a normal form, if it exists.

— ....A....B... both A and B are redices. if first A in A is to
the left of first A in B, then A is o the left of B

— A redex to left of all other redices in a A-expression is
leftmost

Lambda Calculus © BGR, Fall05 26



Church Rosser Property

e (Sethi) Theorem: For A-expressions M,P,Q, let =
stand for a sequence of a and -reductions. if M =P
and M =Q then 3 a term R such that P =R and Q=
R

— Says all reduction sequences progress towards the same
end result if they all terminate

/\
\/

Lambda Calculus © BGR, Fall05 27

“Proof of CR by Example”

(Ax.Ay.x-y) (Az.z) 2) ((Ar.r+2) 3) |~fgh

first eval
T mrm o second eval
substituting for x first:

= (Ay.((\z.z) 2) - y) ((Ar.r+2) 3)
= (Ay.2-y) ((Ar.r+2) 3)
=2-((Aror+2) 3)

=2-5

=-3

Lambda Calculus © BGR, Fall05 28



“Proof of CR by Example”

(AX.Ay.x-y) ((Az.z) 2) ((Ar.r+2) 3)

substitute for y first: substituting for x first:
= (Ax.Xx- (Ar.r+2) 3)) (Az.z) 2) |=0y.((Az.2)2)-y) (Ar.r+2) 3)
= (Ax.x - 5) (Az.z) 2) S
= (((Az.z) 2)-5) =2-5
=(2-5) -
= -3, the same result!
Call by Name

e Can result in some parameter being
evaluated several times - inefficient

e Evaluates arguments only when they are
needed (Algol60 thunks)

e Abandoned in modern PLs because of
inefficiency

 However, guaranteed to reach a normal form
if it exists

Lambda Calculus © BGR, Fall05 30



Call by Value

Efficient

Potentially does a calculation that may not be
used (if fcn is not strict in that parameter)

Can lead to non-terminating computation
— Used in C, Pascal, C++, functional languages

Often obtains a normal form in real
programs

Lambda Calculus © BGR, Fall05 31

Call by Need

e Lazy evaluation - once we evaluate an
argument, then memoize its value to use
again, if needed

e Inbetween two other methods: value and
name

e Accomplished by embedding a pointer to a
value instead of the argument itself in the
expression. Then, when value is first
calculated, it is saved so it will be available
for other uses

Lambda Calculus © BGR, Fall05 32



Call by Need

e Allows use of unbounded streams of input as
well

— What if we need a function to generate list(n), a
list of length n?

— hd ( tl (list(n)) ) needs only the first 2 elements to
be generated; system will only evaluate this many
elements which prefix the list.

Lambda Calculus © BGR, Fall05 33

Reduction Order

 Distinguishing order of applying B-reductions
only matters when some reduction order
leads to a non-terminating computation

e Sethi, p560:

— Leftmost outermost redex first is call by name
(normal order)

— Leftmost, innermost redex first is call by value
Where inner and outer refer to nesting of terms
(A yz. (Ax.x) z (y z)) (A X.X)

Lambda Calculus © BGR, Fall05 34



Reduction Order

e Start with fully parenthesized expression:
— (Av. e) (i) - always reduce e first

— (¢ b) (ii) - if c is not of form (i), then reduce c
until it is of that form. Then, we have a choice as
to how to proceed:

e call by name: reduce (c b) without further
reducing inside c or b.

e call by value: reduce any redices in ¢, then
those in b, and then reduce (c b).

Lambda Calculus © BGR, Fall05 35

Example 1

(Sethi, p560) {[Ay.Az. (Ax.x) z) (y 2))] (Ax.xX)} = (c b)

call by value: reduce c. [Ay.Az.(z (y z))] (Ax.x) = (c’ b) where b
already reduced. reduce (¢’ b) yielding

Az.(z ((Ax.X)z) ) =Az.(z (¢’ b”)). reduce (¢’ b”’) which yields
Az.(z z), the final term.

call by name: c is an abstraction (form i). so instantiate b directly
into c yielding Az.((Ax.x) z) (Ax.X) z)) = A Z. (c* b¥)

now reduce c* so we get an abstraction (form i.), yielding z. then
can perform final reduction of Az.(z ((Ax.x) z)), yielding

Az. z z, the final term, same as above.

Lambda Calculus © BGR, Fall05 36



Example 2

((Ax.Ay.x) z) ((Ar.rr) (As. s s))) =(c b).

call by value: reduce c to yield ((ALy.z) ((Ar.rr) (As. s s))) which is
((Ay.z) (¢’ b’)). reduce (¢’ b’) yielding
((\y.z) ((As.ss) (As.ss))). we end up with a similar term b”.
repeating this reduction will result in a non-terminating
computation

call by name: reduce c to yield ((Ay.z) ((Ar.rr) (As.ss))). now
substitute b into the reduced c, yielding z, because there is no
bound y in Ay.z. z is the normal form for the above term, by
definition.

Lambda Calculus © BGR, Fall05 37

Example 3

L)”

{(Az. Ax.x+6) (Ax.x+6)z)) 1}={c b}

( ¢’ , b’ )

call by value: reduce redicesinc=(c’ b’) where b’ = b”).

h”’) evaluates to b’ = z+6, yielding {(Az. (Ax.x+6) (z+6)) 1}.
now evaluating (¢’ b’) yields {(Az. (z+6)+6) 1} = {(Az. z+12) 1}
now evaluating {c b} yields 1 + 12 = 13.

call by name: c is of correct form, an abstraction (form i.). so
substitute b into c yielding ((Ax.x+6) ((Ax.x+6) 1)) = (c* b*).
substitute b* into c* yielding ((Ax.x+6) 1) + 6 = (cA bA) + 6.
substitute b2 into c? yielding (1 + 6) + 6 =7+6 = 13.

Lambda Calculus © BGR, Fall05 38



