Lambda Calculus

- A formalism for describing the semantics of operations in functional programming languages
- Variables (free or bound), function definition (or abstraction), function application, currying
- Substitution rules β reduction, α reduction, η-reduction Normal form

Lambda Calculus © BGR, Fall05

Lambda Calculus

1

- Church-Rosser theorem
- Evaluation order
 - Call-by-name
 - Call-by-value
 - Call-by-need (lazy)

Lambda Calculus

- Universal theory of functions
- λ-calculus (Church), recursive function theory (Kleene), Turing machines (Turing) all were formal systems to describe computation, developed at the same time in the 1930's
 - Shown formally equivalent to each other
 - Results from one, apply to others

Lambda Calculus © BGR, Fall05

Lambda Calculus

3

- *Conjecture:* class of programs written in λcalculus is equivalent to those which can be simulated on Turing machines.
- All partial recursive functions can be defined in λ -calculus.
- Pure λ-calculus involves functions with no side effects and no types.

Lambda Calculus

- Function: a map from a domain to a range
- Terms:
 - variable (X)
 - function abstraction or definition $(\lambda x.M)$
 - function application (M N)

Lambda Calculus © BGR, Fall05

Function Definition (Abstraction)

- **F**(**y**) = **2** + **y** -- mathematics
- $\mathbf{F} = \lambda \mathbf{y} \cdot 2 + \mathbf{y} \lambda$ calculus
 - bound variable or argument
 - function body
- $\lambda x.x$ (identity function)
- λ y. 2 (constant function whose value is 2)

Function Application

• *Process:* take the argument and substitute it everywhere in the function body for the parameter

(F 3) is 2 + 3 = 5; (($\lambda x.x$) $\lambda y.2$) is $\lambda y.2$;

 $((\lambda z. z+5) 3)$ is 3+5=8

- Functions are *first class citizens*
 - 1. Can be returned as a value
 - 2. Can be passed as an argument
 - 3. Can be put into a data structure as a value

7

8

4. Can be the value of an expression

Lambda Calculus © BGR, Fall05

Relation to C Function Pointers

- Can simulate #1-4 with C function pointers, but this abstraction is closer to the machine than a function abstraction.
- Functions as values are defined more cleanly in Lisp or SML.
- No analogue in C for an unnamed function, (Lisp lambda expression)

Function Application

- Left associative operator- (f g h) is ((f g) h)
- $\lambda x.M x$ is same as $\lambda x.(M x)$
- Function application has highest precedence

Currying (cf. *Haskell Curry*) Area of triangle is λ b. λ h.(b*h)/2 (Area 3) is a function, λ h.(3*h)/2, that describes the area of a family of triangles all with base 3 ((Area 3) 7) = 3 * 7 / 2 = 10.5 in *curried form*, a function takes its arguments one-by-one

Lambda Calculus © BGR, Fall05

Type Signatures

- Area: can write function in two ways
 - un-curried: $\alpha * \beta \rightarrow \gamma$, given b, h as a pair of values, the function returns area
 - curried: $\alpha \rightarrow (\beta \rightarrow \gamma)$, given b, returns a function to calculate area when given h(height)

Free and Bound Variables

Bound variable: x is bound when there is a corresponding λx in front of the λ expression:

$((\lambda y. y))$	y)	is	y
bound	free		

• Free variable: x is not bound (analogous to a variable inherited from an encompassing imperative scope)

Free and Bound Variables

Sethi, p550

- x is free in x, free(x) = x
- x is free (bound) in Y Z if x is free (bound) in
 Y or in Z, free(YZ)= free(Y) ∪ free(Z)
- x ∉ V, then x free (*bound*) in λV.Y iff it occurs free (*bound*) in Y. All occurrences of elements of V are *bound* in λ V.Y,

 $free(\lambda x.M) = free(M) - \{x\}$

• x free (bound) in (Y), if x is free (bound) in Y

Substitution

- *Idea*: function application is seen as a kind of substitution which simplifies a term
 - ((λx.M) N) as substituting N for x in M; written as {N | x} M
- Rules Sethi, p551
 - 1. If free variables of N have no bound occurrences in M, then {N | x} M formed by replacing all free occurrences of x in M by N.

Lambda Calculus © BGR, Fall05

Substitution

plus = $\lambda a.\lambda b. a+b$ then (plus 2) = λb . 2+b but if we evaluate (plus b 3) we get into trouble! problem: = $(\lambda a.\lambda b. a+b b \overline{3})$ (plus b 3)b is a bound $= (\lambda \mathbf{b}, \mathbf{b} + \mathbf{b}, \mathbf{3})$ variable; need = 3 + 3 = 6to rename before (plus b 3) $= (\lambda a. \lambda c. a+c b 3)$ substitute. $= (\lambda c. b+c 3)$ = b + 3, what we expected!

Substitution

- 2. If variable y free in N and bound in M, replace binding and bound occurrences of y by a new variable named z. Repeat until case 1. applies.
- Examples

$$\{u \mid x\} x = u \qquad \{u \mid x\} (x \ u) = (u \ u)$$

$$\{\lambda x.x \mid x\} x = \lambda x.x \qquad \{u \mid x\} y = y$$

$$\{u \mid x\} \lambda x.x = \lambda x.x$$

$$\{u \mid x\} (\lambda u.x) = \{u \mid x\} (\lambda z.x) = \lambda z.u$$

$$\{u \mid x\} (\lambda u.u) = \{u \mid x\} (\lambda z.z) = \lambda z.z$$

$$Change of variables.$$

Lambda Calculus © BGR, Fall05

Reductions

- β-reduction (λx.M) N = {N | x} M with above rules
- α-reduction (λx.M) = λz.{z | x} M, if z not free in M (allows change of bound variable names)
- η-reduction (λ x.(M x)) = M, if x not free in M (allows stripping off of layers of indirection in function application)
- See Sethi, Figure 14.1, p 553 for rules about β– equality of terms

Example

Evaluate $(\lambda xyz . xz (yz)) (\lambda x. x) (\lambda y. y)$

 $(\overline{\lambda xyz} \cdot (xz \cdot (yz))) (\lambda x \cdot x) (\lambda y \cdot y), 2 \alpha$ -reds + fully parenthesize

= [{ ($\lambda abz .(a z (b z))) (\lambda x .x)$ } ($\lambda y .y$)]

- = [{ (λ bz. ((λ x.x) z (b z))) } (λ y .y)], { λ x.x | a}
- = [{ $\lambda bz. (((\lambda x.x) z) (b z))$ } $(\lambda y .y)$], fully parenthesize
- = [{ λ bz. (z (b z))} (λ y .y)], {z | x}
- = [{ $\lambda z. (z ((\lambda y . y) z))$ }], { $\lambda y. y \mid b$ }
- = { $(\lambda z. z z)$ }, {z | y}
- Note: we picked the order of β-reductions here

Lambda Calculus © BGR, Fall05

Substitution Rules cf Sethi p 555, GHH p 49

<u>M</u>	$\{N \mid x\} M$
X	Ν
У	Μ
if M a vo	wriable, then if $M \neq x$ get M , else get N (3.1 GHH)
PQ	$\{N \mid x\} P \{N \mid x\} Q$
result of to app	substitution applied to function application is ly that substitution to the function and its
argun applic	nent and then perform the resulting ation(3.2 GHH)

Substitution Rules cf Sethi p 555, GHH p 49

M{N | x} M3.3a) λx .Pλx .Pnever substitute for a bound variable within its scope3.3b) λy .Pλy .Pif there are no free occurrences of x in P3.3c) λy .Pλy .{N | x} Pwhen there are no free occurrences of y in N3.3d) λy .Pλz .{N | x} { z | y} Pwhen there is a free occurrence of y in N and z is notfree in P or N, substitute z for y in P and continue.

Lambda Calculus © BGR, Fall05

19

Substitution Rules

- All these checks are aimed at ensuring that we don't link variable occurrences that are independent!
- Our example ((λ a.λ b.a+b) b), would use 3.3d to change variables before doing the substitution
- Normal form of a term a form which can allow no further β or γ reductions
 - No remaining (($\lambda x.M$) N), called a *redex* or term which can be reduced

Example GHH, p50

{y | x} λ y. x y use 3.3d to change bound var λ z. {y | x} ({z | y} (x y)) apply 3.2 for fcn appln λ z. {y | x} ({z | y} (x) {z | y} (y)) apply 3.1 twice λ z. {y | x} (x z) apply 3.2 λ z. ({y | x} (x) {y | x} (z)) apply 3.1 twice λ z. y z final result;

compare this to what we started with!

Lambda Calculus © BGR, Fall05

Church Rosser Property

- Fundamental result of λ-calculus:
 - Result of a computation is *independent* of the order in which β -reductions are applied
 - Leads to referential transparency in functional PL's
 - Another interpretation is that most terms in the λ -calculus have a *normal form*, a form that cannot be reduced any simpler; Church Rosser says <u>if a</u> <u>normal form exists</u>, <u>then all reduction sequences</u> <u>lead to it</u>

Normal Form

 Does every λ-expression have a normal form? NO, because there are terms which cannot be simplified, yet they contain redices

 $\begin{array}{l} -(\lambda x.x \; x)\; (\lambda x.x \; x)\; = (\lambda y.\; y\; y)\; (\lambda x.x\; x)\;, \alpha \text{-reduction} \\ = (\lambda x.x\; x)\; (\lambda x.x\; x), \beta \text{-reduction} \end{array}$

this term has no normal form

- $(\lambda x.x x x) (\lambda x.x x x) = (\lambda y. y y y) (\lambda x.x x x), \alpha$ -red = $(\lambda x.x x x) (\lambda x.x x x) (\lambda x.x x x), \beta$ -red this term grows as we apply β -reductions!

Lambda Calculus © BGR, Fall05

23

Normal Form

- If add6 = $\lambda x. x+6$, twice = $\lambda f \lambda x. f(f x)$, what is value of (twice add6)? (twice add6) = $(\lambda f.\lambda z.f(f z)) (\lambda x.x+6)$ = $\lambda z. ((\lambda x.x+6) ((\lambda x.x+6) z))$ = $\lambda z. ((\lambda x.x+6) (z+6))$ = $\lambda z. (z + 12)$, normal form - normal form of { $\lambda x. ((\lambda z.z x) (\lambda x.x))$ } y? free { $\lambda x. ((\lambda z.z x) (\lambda x.x))$ } y = { $\lambda x. ((\lambda x.x) x)$ } y = { $\lambda x. x$ } y = y

Lambda Calculus © BGR, Fall05

Equality of Terms

- Reduce each term to its normal form and compare
- But whether or not a term has a normal form is *undecidable* (related to halting problem for Turing machies)
- Same term may have terminating and nonterminating β-reduction sequences; if at least one terminates, use its result as the normal form for that term

Lambda Calculus © BGR, Fall05

Church Rosser Property

- (GHH)Theorem 1: If a λ -expression reduces to a normal form, it is unique
- (GHH)Theorem 2: If we always reduce leftmost redex first, the reduction sequence will terminate in a normal form, if it exists.
 -B.... both A and B are redices. if first λ in A is to the left of first λ in B, then A is to the left of B
 - A redex to left of all other redices in a λ-expression is leftmost

Church Rosser Property

- (Sethi) Theorem: For λ-expressions M,P,Q, let ⇒ stand for a sequence of α and β-reductions. if M ⇒P and M ⇒Q then ∃ a term R such that P ⇒R and Q⇒ R
 - Says all reduction sequences progress towards the same end result if they all terminate

Lambda Calculus © BGR, Fall05

"Proof of CR by Example"

 $(\lambda x.\lambda y.x-y) ((\lambda z.z) 2) ((\lambda r.r+2) 3) \sim f g h$ first eval substituting for x first: $= (\lambda y.((\lambda z.z) 2) - y) ((\lambda r.r+2) 3)$ $= (\lambda y.2-y) ((\lambda r.r+2) 3)$ $= 2 - ((\lambda r.r+2) 3)$ = 2 - 5= -3

Lambda Calculus © BGR, Fall05

"Proof of CR by Example"

 $(\lambda x.\lambda y.x-y) ((\lambda z.z) 2) ((\lambda r.r+2) 3)$ substitute for y first: = $(\lambda x.x - ((\lambda r.r+2) 3)) ((\lambda z.z) 2)$ = $(\lambda x.x - 5) ((\lambda z.z) 2)$ = $(((\lambda z.z) 2) - 5)$ = (2 - 5)= -3, the same result!

substituting for x first: = $(\lambda y.((\lambda z.z) 2) - y) ((\lambda r.r+2) 3)$ = $(\lambda y.2-y) ((\lambda r.r+2) 3)$ = 2 - $((\lambda r.r+2) 3)$ = 2 - 5 = -3

Lambda Calculus © BGR, Fall05

29

Call by Name

- Can result in some parameter being evaluated several times inefficient
- Evaluates arguments only when they are needed (Algol60 thunks)
- Abandoned in modern PLs because of inefficiency
- However, guaranteed to reach a normal form if it exists

Call by Value

- Efficient
- Potentially does a calculation that may not be used (if fcn is not *strict* in that parameter)
- Can lead to non-terminating computation – Used in C, Pascal, C++, functional languages
- Often obtains a normal form in real programs

Lambda Calculus © BGR, Fall05

Call by Need

- *Lazy evaluation* once we evaluate an argument, then memoize its value to use again, if needed
- Inbetween two other methods: value and name
- Accomplished by embedding a pointer to a value instead of the argument itself in the expression. Then, when value is first calculated, it is saved so it will be available for other uses

Call by Need

- Allows use of unbounded streams of input as well
 - What if we need a function to generate list(n), a list of length n?
 - hd (tl (list(n))) needs only the first 2 elements to be generated; system will only evaluate this many elements which prefix the list.

Lambda Calculus © BGR, Fall05

Reduction Order

- Distinguishing order of applying β-reductions only matters when some reduction order leads to a non-terminating computation
- Sethi, p560:
 - Leftmost outermost redex first is call by name (normal order)

Leftmost, innermost redex first is call by value
 Where inner and outer refer to nesting of terms

 $(\lambda yz. (\lambda x.x) z (y z)) (\lambda x.x)$

Reduction Order

- Start with fully parenthesized expression:
 - $-(\lambda v. e)(i)$ always reduce e first
 - (c b) (ii) if c is not of form (i), then reduce c until it is of that form. Then, we have a choice as to how to proceed:
 - call by name: reduce (c b) without further reducing inside c or b.
 - call by value: reduce any redices in c, then those in b, and then reduce (c b).

Lambda Calculus © BGR, Fall05

Example 1

- (Sethi, p560) { $[\lambda y.\lambda z. ((\lambda x.x) z) (y z))] (\lambda x.x)$ } = (c b)
- *call by value:* reduce **c**. $[\lambda y.\lambda z.(z (y z))] (\lambda x.x) = (c' b)$ where **b** already reduced. reduce (c' b) yielding
 - $\lambda z.(z ((\lambda x.x) z)) = \lambda z.(z (c'' b''))$. reduce (c'' b'') which yields
 - $\lambda z.(z z)$, the final term.
- *call by name:* **c** is an abstraction (form i). so instantiate **b** directly into **c** yielding $\lambda z.(((\lambda x.x) z) ((\lambda x.x) z)) = \lambda z. (c* b*)$
- now reduce c* so we get an abstraction (form i.), yielding z. then can perform final reduction of $\lambda z.(z ((\lambda x.x) z))$, yielding

 λz . z z, the final term, same as above.

Lambda Calculus © BGR, Fall05

Example 2

 $(((\lambda x.\lambda y.x) z) ((\lambda r.r r) (\lambda s. s s))) = (c b).$

call by value: reduce **c** to yield ((λy.z) ((λr.r r) (λs. s s))) which is ((λy.z) (c' b')). reduce (c' b') yielding

 $((\lambda y.z) ((\lambda s.s s) (\lambda s. s s)))$. we end up with a similar term b". repeating this reduction will result in a non-terminating computation

call by name: reduce c to yield $((\lambda y.z) ((\lambda r.r r) (\lambda s. s s)))$. now substitute b into the reduced c, yielding z, because there is no bound y in $\lambda y.z.$ z is the normal form for the above term, by definition.

Lambda Calculus © BGR, Fall05

37

Example 3

c" b"

 $\{(\lambda z. (\lambda x.x+6) ((\lambda x.x+6) z)) \ 1\} = \{ c \ b \}$

c', b')

call by value: reduce redices in c = (c' b') where b' = (c'' b'').

(c'' b'') evaluates to b' = z+6, yielding {($\lambda z. (\lambda x.x+6) (z+6)$) 1}. now evaluating (c' b') yields {($\lambda z. (z+6)+6$) 1} = {($\lambda z. z+12$) 1} now evaluating {c b} yields 1 + 12 = 13.

call by name: **c** is of correct form, an abstraction (form i.). so substitute **b** into **c** yielding $((\lambda x.x+6) ((\lambda x.x+6) 1)) = (c^* b^*)$. substitute **b*** into c* yielding $((\lambda x.x+6) 1) + 6 = (c^* b^*) + 6$. substitute **b**^ into c^ yielding (1 + 6) + 6 = 7 + 6 = 13.