Lambda Calculus

- A formalism for describing the semantics of operations in functional programming languages
- Variables (free or bound), function definition (or abstraction), function application, currying
- Substitution rules
β reduction, α reduction, η-reduction
Normal form

Lambda Calculus © BGR, Fall05

Lambda Calculus

- Church-Rosser theorem
- Evaluation order
- Call-by-name
- Call-by-value
- Call-by-need (lazy)

Lambda Calculus

- Universal theory of functions
- λ-calculus (Church), recursive function theory (Kleene), Turing machines (Turing) all were formal systems to describe computation, developed at the same time in the 1930's
- Shown formally equivalent to each other
- Results from one, apply to others

Lambda Calculus

- Conjecture: class of programs written in λ calculus is equivalent to those which can be simulated on Turing machines.
- All partial recursive functions can be defined in λ-calculus.
- Pure λ-calculus involves functions with no side effects and no types.

Lambda Calculus

- Function: a map from a domain to a range
- Terms:
- variable (X)
- function abstraction or definition ($\boldsymbol{\lambda} \mathbf{x} . \mathrm{M}$)
- function application (M N)

Function Definition (Abstraction)

- $\mathbf{F}(\mathbf{y})=2+\mathbf{y}-$ mathematics
- $\mathbf{F} \equiv \lambda \mathbf{y} .2+y$-- λ calculus
- bound variable or argument
- function body
- λ x.x (identity function)
- λ y. 2 (constant function whose value is 2)

Function Application

- Process: take the argument and substitute it everywhere in the function body for the parameter
(F 3) is $2+3=5$; $\quad\left(\left(\lambda_{\mathrm{x}} \mathrm{x}\right) \lambda \mathrm{y} .2\right)$ is $\lambda \mathrm{y} .2$;
$((\lambda z . z+5) 3)$ is $3+5=8$
- Functions are first class citizens

1. Can be returned as a value
2. Can be passed as an argument
3. Can be put into a data structure as a value
4. Can be the value of an expression

Relation to C Function Pointers

- Can simulate \#1-4 with C function pointers, but this abstraction is closer to the machine than a function abstraction.
- Functions as values are defined more cleanly in Lisp or SML.
- No analogue in C for an unnamed function, (Lisp lambda expression)

Function Application

- Left associative operator- (f $\mathbf{g h}$) is ((f g) h)
- λ x.Mx is same as λ x.(Mx)
- Function application has highest precedence
- Currying (cf. Haskell Curry) Area of triangle is $\lambda \mathbf{b} . \lambda \mathbf{h} .(b * h) / 2$
(Area 3) is a function, $\lambda \mathrm{h} .(3 * h) / 2$, that describes the area of a family of triangles all with base 3
$(($ Area 3) 7) $=\mathbf{3 * 7 / 2 = 1 0 . 5}$
in curried form, a function takes its arguments one-by-one

Type Signatures

- Area: can write function in two ways
- un-curried: $\alpha^{*} \beta \rightarrow \gamma$, given b, h as a pair of values, the function returns area
- curried: $\alpha \rightarrow(\beta \rightarrow \gamma)$, given b, returns a function to calculate area when given $h(h e i g h t)$

Free and Bound Variables

- Bound variable: x is bound when there is a corresponding λx in front of the λ expression:
$((\lambda \mathbf{y} \cdot \mathbf{y}) y)$ is y bound free
- Free variable: \mathbf{x} is not bound (analogous to a variable inherited from an encompassing imperative scope)

Free and Bound Variables

Sethi, p550

- x is free in x, free $(x)=x$
- x is free (bound) in $Y Z$ if x is free (bound) in \mathbf{Y} or in \mathbf{Z}, free $(\mathbf{Y Z})=$ free $(\mathbf{Y}) \cup$ free (\mathbf{Z})
- $x \notin V$, then x free (bound) in λV.Y iff it occurs free (bound) in Y. All occurrences of elements of V are bound in λ V.Y,
free $(\lambda \mathbf{x} . M)=\operatorname{free}(\mathbf{M})-\{x\}$
- x free (bound) in (Y), if x is free (bound) in Y

Substitution

- Idea: function application is seen as a kind of substitution which simplifies a term
- (($\lambda \mathrm{x} . \mathrm{M}) \mathrm{N})$ as substituting N for x in M; written as $\{\mathbf{N} \mid \mathbf{x}\} \mathbf{M}$
- Rules - Sethi, p551

1. If free variables of \mathbf{N} have no bound occurrences in \mathbf{M}, then $\{\mathbf{N} \mid \mathbf{x}\} \mathbf{M}$ formed by replacing all free occurrences of x in M by N.

Substitution

plus $\equiv \lambda \mathbf{a} . \lambda \mathbf{b} . \mathbf{a}+\mathbf{b}$
then (plus 2) $\equiv \lambda b$. 2+b but if we evaluate (plus $b 3$) we get into trouble! (plus b 3)

$$
\left.\left.\begin{array}{l|l|}
=(\lambda a \cdot \lambda b . a+b \quad b \quad 3
\end{array}\right) \quad \begin{array}{l}
\text { problem: } \\
=(\lambda b . b+b \quad 3) \\
=3+3=6
\end{array} \quad \begin{array}{l}
\text { bis a bound } \\
\text { variable; need } \\
\text { to rename before } \\
=(\lambda a \cdot \lambda c . a+c \quad b \quad 3
\end{array}\right) \quad \begin{aligned}
& \text { substitute. } \\
& =(\lambda c . b+c \text { 3) } \\
& =b+3, \text { what we expected }
\end{aligned}
$$

Substitution

2. If variable \mathbf{y} free in \mathbf{N} and bound in M , replace binding and bound occurrences of y by a new variable named z. Repeat until case 1. applies.

- Examples
$\{\mathbf{u} \mid \mathbf{x}\} \mathbf{x}=\mathbf{u} \quad\{\mathbf{u} \mid \mathbf{x}\}(\mathbf{x} \mathbf{u})=(\mathbf{u} \mathbf{u})$
$\{\lambda \mathbf{x} . \mathbf{x} \mid \mathbf{x}\} \mathbf{x}=\lambda \mathbf{x} . \mathbf{x} \quad\{\mathbf{u} \mid \mathbf{x}\} \mathbf{y}=\mathbf{y}$
$\{\mathbf{u} \mid \mathbf{x}\} \lambda \mathbf{x} . \mathbf{x}=\lambda \mathbf{x} . \mathbf{x}$
$\{\mathbf{u} \mid \mathbf{x}\}(\lambda \mathbf{u} . \mathbf{x})=\{\mathbf{u} \mid \mathbf{x}\}(\lambda \mathbf{z} . \mathbf{x})=\lambda \mathbf{z} . \mathbf{u}$
$\{\mathbf{u} \mid \mathbf{x}\}(\lambda \mathbf{u} . \mathbf{u})=\{\mathbf{u} \mid \mathbf{x}\}(\lambda \mathbf{z} . \mathbf{z})=\lambda \mathbf{z} . \mathbf{z} \quad$ Examples of need for
change of variables.

Reductions

- β-reduction ($\boldsymbol{\lambda} \mathbf{x} . \mathbf{M}$) $\mathbf{N}=\{\mathbf{N} \mid \mathbf{x}\} \mathbf{M}$ with above rules
- α-reduction ($\lambda \mathbf{x} . \mathbf{M}$) $=\lambda \mathbf{z} .\{\mathbf{z} \mid \mathbf{x}\} \mathbf{M}$, if \mathbf{z} not free in M (allows change of bound variable names)
- η-reduction ($\boldsymbol{\lambda} \mathbf{x}$.(M x)) $=\mathbf{M}$, if \mathbf{x} not free in M (allows stripping off of layers of indirection in function application)
- See Sethi, Figure 14.1, p 553 for rules about β equality of terms

Example

$$
\begin{aligned}
& \text { Evaluate (} \lambda \mathrm{xyz} . \mathrm{xz}(\mathrm{yz}))(\lambda \mathrm{x} . \mathrm{x})(\lambda \mathrm{y} . \mathrm{y}) \\
& (\lambda x y z .(\mathbf{x z}(\mathbf{y z})))(\lambda \mathbf{x} . \mathbf{x})(\lambda y \cdot y), 2 \alpha-\text { reds }+ \text { fully parenthesize } \\
& =[\{(\lambda \mathbf{a b z} \cdot(\mathbf{a z}(\mathrm{b} \mathbf{z})))(\lambda \mathrm{x} . \mathrm{x})\}(\lambda \mathrm{y} \cdot \mathrm{y})] \\
& =[\{(\lambda \mathbf{b z} .((\lambda \mathbf{x} . \mathbf{x}) \mathbf{z}(\mathbf{b} \mathbf{z})))\}(\lambda y . y)],\{\lambda \mathbf{x} . \mathrm{x} \mid \mathrm{a}\} \\
& =[\{\lambda \mathbf{b z} \cdot(((\lambda \mathbf{x} . \mathbf{x}) \mathbf{z})(\mathbf{b} \mathbf{z}))\}(\lambda y \cdot \mathrm{y})] \text {, fully parenthesize } \\
& =[\{\lambda \mathbf{b z} \cdot(\mathbf{z}(\mathbf{b} \mathbf{z}))\}(\lambda y \cdot y)],\{\mathrm{z} \mid \mathrm{x}\} \\
& =[\{\lambda z \cdot(\mathbf{z}((\lambda y \cdot y) \mathbf{z}))\}],\{\lambda \mathrm{y} \cdot \mathrm{y} \mid \mathrm{b}\} \\
& =\{(\lambda \mathbf{z} . \mathbf{z} \mathbf{z})\},\{\mathbf{z} \mid \mathbf{y}\}
\end{aligned}
$$

- Note: we picked the order of $\boldsymbol{\beta}$-reductions here

Substitution Rules cfsethi p 555 , GHHp p49

M $\quad\{\mathbf{N} \mid \mathbf{x}\} \mathbf{M}$
\mathbf{x}
N
$\mathbf{y} \quad \mathbf{M}$
if M a variable, then if $M \neq x$ get M, else get N (3.1 GHH) PQ $\quad\{\mathbf{N} \mid \mathbf{x}\} \mathbf{P}\{\mathbf{N} \mid \mathbf{x}\} \mathbf{Q}$
result of substitution applied to function application is to apply that substitution to the function and its argument and then perform the resulting application(3.2 GHH)

Substitution Rules cr sethi p 555 , GHHp 49

$\underline{\underline{M} \quad\{\mathbf{N} \mid x\} \mathbf{M}}$

3.3a) $\lambda \mathrm{x} . \mathrm{P} \quad \lambda \mathrm{x} . \mathrm{P}$
never substitute for a bound variable within its scope
3.3b) $\lambda \mathbf{y} . \mathbf{P} \quad \lambda y . P$
if there are no free occurrences of x in P
3.3c) $\lambda \mathbf{y} . \mathrm{P} \quad \lambda \mathrm{y} .\{\mathrm{N} \mid \mathrm{x}\} \mathbf{P}$
when there are no free occurrences of y in N
3.3d) $\lambda \mathbf{y} . \mathbf{P} \quad \lambda \mathrm{z} .\{\mathbf{N} \mid \mathrm{x}\}\{\mathrm{z} \mid \mathrm{y}\} \mathbf{P}$
when there is a free occurrence of y in N and z is not free in P or N, substitute z for y in P and continue.

Substitution Rules

- All these checks are aimed at ensuring that we don't link variable occurrences that are independent!
- Our example ((λ a. λ b.a+b) b), would use 3.3d to change variables before doing the substitution
- Normal form of a term - a form which can allow no further β or η reductions
- No remaining ($(\lambda \mathbf{x} . \mathrm{M}) \mathrm{N})$, called a redex or term which can be reduced

Example GhH, p50

$\{\mathrm{y} \mid \mathrm{x}\} \lambda \mathrm{y} . \mathrm{xy}$ use 3.3d to change bound var
$\lambda \mathbf{z} .\{\mathrm{y} \mid \mathrm{x}\}(\{\mathrm{z} \mid \mathrm{y}\}(\mathrm{x} y))$ apply 3.2 for fcn appln
$\lambda \mathrm{z} .\{\mathrm{y} \mid \mathrm{x}\}(\{\mathrm{z} \mid \mathrm{y}\}(\mathrm{x}) \quad\{\mathrm{z} \mid \mathrm{y}\}(\mathrm{y}))$ apply 3.1 twice
$\lambda \mathrm{z} .\{\mathrm{y} \mid \mathrm{x}\}(\mathrm{x}$ z) apply 3.2
$\lambda \mathrm{z} .(\{\mathrm{y} \mid \mathrm{x}\}(\mathrm{x})\{\mathrm{y} \mid \mathrm{x}\}(\mathrm{z}))$ apply 3.1 twice
$\lambda \mathrm{z} . \mathrm{yz}$ final result;
compare this to what we started with!

Church Rosser Property

- Fundamental result of $\boldsymbol{\lambda}$-calculus:
- Result of a computation is independent of the order in which β-reductions are applied
- Leads to referential transparency in functional PL's
- Another interpretation is that most terms in the λ -calculus have a normal form, a form that cannot be reduced any simpler; Church Rosser says if a normal form exists, then all reduction sequences lead to it

Normal Form

- Does every λ-expression have a normal form? NO, because there are terms which cannot be simplified, yet they contain redices
$-(\lambda \mathrm{x} . \mathrm{x} x)(\lambda \mathrm{x} . \mathrm{xx})=(\lambda \mathrm{y} . \mathrm{y} y)(\lambda \mathrm{x} . \mathrm{x} \mathbf{x}), \alpha-$ reduction
$=(\lambda \mathrm{x} . \mathrm{x} \mathbf{x})(\lambda \mathrm{x} . \mathrm{x} \mathrm{x}), \beta$-reduction
this term has no normal form

$$
\begin{aligned}
& =(\lambda \times . \times \times x)(\lambda \mathbf{x . x \times x})(\lambda \times . \times \mathbf{x}), \beta-r e d
\end{aligned}
$$

this term grows as we apply β-reductions!

Normal Form

- If add $6 \equiv \lambda x \cdot x+6$, twice $\equiv \lambda f \lambda x . f(f x)$, what is value of (twice add6)?
(twice add6) $=(\lambda f . \lambda z . f(f \mathrm{z}))(\lambda x . x+6)$

$$
\begin{aligned}
& =\lambda z \cdot((\lambda x \cdot x+6)((\lambda x \cdot x+6) z)) \\
& =\lambda z \cdot((\lambda x \cdot x+6)(z+6)) \\
& =\lambda z \cdot(z+12), \text { normal form }
\end{aligned}
$$

- normal form of $\{\lambda \mathbf{x} .((\lambda \mathrm{z} . \mathrm{z} \mathrm{x})(\lambda \mathbf{x} . \mathrm{x}))\} \mathbf{y}$?
$\{\lambda \mathrm{x} .((\lambda$ z.z x $)(\lambda \mathrm{x} . \mathrm{x}))\} \mathbf{y}=\{\lambda \mathrm{x} .((\lambda \mathrm{x} . \mathrm{x}) \mathrm{x})\} \mathbf{y}$

$$
\begin{aligned}
& =\{\lambda x \cdot x\} \mathbf{y} \\
& =\mathbf{y}
\end{aligned}
$$

Equality of Terms

- Reduce each term to its normal form and compare
- But whether or not a term has a normal form is undecidable (related to halting problem for Turing machies)
- Same term may have terminating and nonterminating β-reduction sequences; if at least one terminates, use its result as the normal form for that term

Church Rosser Property

- (GHH)Theorem 1: If a λ-expression reduces to a normal form, it is unique
- (GHH)Theorem 2: If we always reduce leftmost redex first, the reduction sequence will terminate in a normal form, if it exists.
-A....B... both A and B are redices. if first λ in A is to the left of first λ in \mathbf{B}, then \mathbf{A} is to the left of \mathbf{B}
- A redex to left of all other redices in a λ-expression is leftmost

Church Rosser Property

- (Sethi) Theorem: For λ-expressions $\mathbf{M , P , Q}$, let \Rightarrow stand for a sequence of α and β-reductions. if $M \Rightarrow P$ and $M \Rightarrow Q$ then \exists a term R such that $P \Rightarrow R$ and $Q \Rightarrow$ R
- Says all reduction sequences progress towards the same end result if they all terminate

"Proof of CR by Example"

$$
\begin{aligned}
& (\lambda x \cdot \lambda y \cdot x-y)((\lambda z . z) 2)((\lambda r . r+2) 3) \quad \sim \mathrm{fg} \mathrm{~h} \\
& \text { first eval }
\end{aligned}
$$

"Proof of CR by Example"

($\lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{x}-\mathrm{y})((\lambda \mathrm{z} . \mathrm{z}) 2)((\lambda \mathrm{r} . \mathrm{r}+2) 3)$
substitute for y first:

$=(\lambda \mathbf{x} \cdot \mathbf{x}-((\lambda r . r+2) 3))((\lambda z . z)$	$2)$	$\begin{array}{l}\text { substituting for x first: } \\ =(\lambda y .((\lambda z . z) 2)-y)((\lambda r . r+2) 3) \\ =(\lambda x . x-5)((\lambda z . z) 2)\end{array}$
$=((\lambda z . z) 2)-5)$	$=(\lambda y .2-y)((\lambda r . r+2) 3)$	
$=(2-5)$	$=2-((\lambda r . r+2) 3)$	
	$=2-5$	
	$=-3$	

$=-3$, the same result!

Call by Name

- Can result in some parameter being evaluated several times - inefficient
- Evaluates arguments only when they are needed (Algol60 thunks)
- Abandoned in modern PLs because of inefficiency
- However, guaranteed to reach a normal form if it exists

Call by Value

- Efficient
- Potentially does a calculation that may not be used (if fen is not strict in that parameter)
- Can lead to non-terminating computation - Used in C, Pascal, C++, functional languages
- Often obtains a normal form in real programs

Call by Need

- Lazy evaluation - once we evaluate an argument, then memoize its value to use again, if needed
- Inbetween two other methods: value and name
- Accomplished by embedding a pointer to a value instead of the argument itself in the expression. Then, when value is first calculated, it is saved so it will be available for other uses

Call by Need

- Allows use of unbounded streams of input as well
- What if we need a function to generate list(n), a list of length n ?
- hd (tl (list(n))) needs only the first 2 elements to be generated; system will only evaluate this many elements which prefix the list.

Reduction Order

- Distinguishing order of applying $\boldsymbol{\beta}$-reductions only matters when some reduction order leads to a non-terminating computation
- Sethi, p560:
- Leftmost outermost redex first is call by name (normal order)
- Leftmost, innermost redex first is call by value

Where inner and outer refer to nesting of terms
$\overline{\overline{(\lambda} \mathbf{y z} .(\lambda x . x) \mathrm{z}(\mathrm{y} \mathrm{z}))(\lambda \mathbf{x . x})}$

Reduction Order

- Start with fully parenthesized expression:
- ($\lambda \mathrm{v} . \mathrm{e}$) (i) - always reduce e first
- (c b) (ii) - if \mathbf{c} is not of form (i), then reduce \mathbf{c} until it is of that form. Then, we have a choice as to how to proceed:
- call by name: reduce ($\mathbf{c} \mathbf{b}$) without further reducing inside \mathbf{c} or \mathbf{b}.
- call by value: reduce any redices in c , then those in \mathbf{b}, and then reduce ($\mathbf{c} \mathbf{b}$).

Example 1

(Sethi, p560) $\{[\lambda \mathrm{y} . \lambda \mathrm{z} .((\lambda \mathrm{x} . \mathrm{x}) \mathrm{z})(\mathrm{y} \mathbf{z}))](\lambda \mathrm{x} . \mathrm{x})\}=(\mathrm{c} \mathbf{b})$
 already reduced. reduce ($c^{\prime} b$) yielding
$\lambda z .(\mathrm{z}((\lambda x . x) \mathrm{z}))=\lambda \mathrm{z} .\left(\mathrm{z}\left(\mathbf{c}^{\prime \prime} \mathrm{b}^{\prime \prime}\right)\right)$. reduce ($\left.\mathbf{c}{ }^{\prime \prime} \mathrm{b}^{\prime \prime}\right)$ which yields $\lambda z .(\mathrm{z} \mathrm{z})$, the final term.
call by name: c is an abstraction (form i). so instantiate b directly into c yielding $\left.\lambda \mathbf{z} .\left(\left(\lambda_{\mathrm{x}} . \mathrm{x}\right) \mathrm{z}\right)((\lambda \mathrm{x} . \mathrm{x}) \mathrm{z})\right)=\lambda \mathrm{z} .\left(\mathbf{c}^{*} \mathbf{b}^{*}\right)$
now reduce c^{*} so we get an abstraction (form i.), yielding z. then can perform final reduction of $\lambda \mathrm{z} .(\mathrm{z}((\lambda \mathrm{x} . \mathrm{x}) \mathrm{z}))$, yielding
$\lambda z . \mathrm{z} \mathrm{z}$, the final term, same as above.

Example 2

$(((\lambda x . \lambda y . x) z)((\lambda r . r r)(\lambda s . s s)))=(c \quad b)$.
call by value: reduce c to yield $((\lambda y . z)((\lambda r . r r)(\lambda s . s s)))$ which is ($(\lambda y . z)$ ($\left.c^{\prime} b^{\prime}\right)$). reduce ($\left.c^{\prime} b^{\prime}\right)$ yielding $((\lambda y . z)((\lambda s . s s)(\lambda s . s s)))$. we end up with a similar term b". repeating this reduction will result in a non-terminating computation
call by name: reduce c to yield (($\lambda \mathrm{y} . \mathrm{z})((\lambda \mathrm{r} . \mathrm{r} \mathrm{r})(\lambda \mathrm{s} . \mathrm{s} \mathrm{s}))$). now substitute b into the reduced c, yielding z, because there is no bound y in $\lambda y . z . z$ is the normal form for the above term, by definition.

Example 3

call by value: reduce redices in $c=\left(c^{\prime} b^{\prime}\right)$ where $b^{\prime}=\left(c^{\prime \prime} b^{\prime \prime}\right)$ 。

now evaluating ($\left.c^{\prime} b^{\prime}\right)$ yields $\{(\lambda z .(z+6)+6) 1\}=\{(\lambda \mathrm{z} . \mathrm{z}+12) 1\}$ now evaluating $\{\mathrm{c}$ b\} yields $\mathbf{1 + 1 2}=\mathbf{1 3}$.
call by name: c is of correct form, an abstraction (form i.). so substitute b into c yielding $((\lambda x \cdot x+6)((\lambda \times . x+6) 1))=\left(c^{*} b^{*}\right)$. substitute b^{*} into c^{*} yielding $((\lambda x . x+6) 1)+6=\left(c^{\wedge} b^{\wedge}\right)+6$. substitute b^{\wedge} into c^{\wedge} yielding $(1+6)+6=7+6=13$.

