
Lambda Calculus ! BGR, Fall05 1

Lambda CalculusLambda Calculus

• A formalism for describing the semantics of

operations in functional programming

languages

• Variables (free or bound), function definition

(or abstraction), function application,

currying

• Substitution rules

" reduction, # reduction, $-reduction

Normal form

Lambda Calculus ! BGR, Fall05 2

Lambda CalculusLambda Calculus

• Church-Rosser theorem

• Evaluation order

– Call-by-name

– Call-by-value

– Call-by-need (lazy)

Lambda Calculus ! BGR, Fall05 3

Lambda CalculusLambda Calculus

• Universal theory of functions

• %-calculus (Church), recursive function

theory (Kleene), Turing machines (Turing)

all were formal systems to describe

computation, developed at the same time in

the 1930’s

– Shown formally equivalent to each other

– Results from one, apply to others

Lambda Calculus ! BGR, Fall05 4

Lambda CalculusLambda Calculus

• Conjecture: class of programs written in %-

calculus is equivalent to those which can be

simulated on Turing machines.

• All partial recursive functions can be defined

in %-calculus.

• Pure %-calculus involves functions with no

side effects and no types.

Lambda Calculus ! BGR, Fall05 5

Lambda CalculusLambda Calculus

• Function: a map from a domain to a range

• Terms:

– variable (X)

– function abstraction or definition (%x.M)

– function application (M N)

Lambda Calculus ! BGR, Fall05 6

Function DefinitionFunction Definition

(Abstraction)(Abstraction)

• F(y) = 2 + y -- mathematics

• F & % y. 2+y -- % calculus

– bound variable or argument

– function body

• % x.x (identity function)

• % y. 2 (constant function whose value is 2)

Lambda Calculus ! BGR, Fall05 7

Function ApplicationFunction Application

• Process: take the argument and substitute it

everywhere in the function body for the

parameter

(F 3) is 2 + 3 = 5; ((% x.x) % y.2) is % y.2;

((% z. z+5) 3) is 3+5 = 8

• Functions are first class citizens
1. Can be returned as a value
2. Can be passed as an argument
3. Can be put into a data structure as a value
4. Can be the value of an expression

Lambda Calculus ! BGR, Fall05 8

Relation to C Function PointersRelation to C Function Pointers

• Can simulate #1-4 with C function pointers,

but this abstraction is closer to the machine

than a function abstraction.

• Functions as values are defined more cleanly

in Lisp or SML.

• No analogue in C for an unnamed function,

(Lisp lambda expression)

Lambda Calculus ! BGR, Fall05 9

Function ApplicationFunction Application

• Left associative operator- (f g h) is ((f g) h)

• % x.M x is same as % x.(M x)

• Function application has highest precedence

• Currying (cf. Haskell Curry)
Area of triangle is % b. % h.(b*h)/2
(Area 3) is a function, % h.(3*h)/2, that

describes the area of a family of triangles all
with base 3

((Area 3) 7) = 3 * 7 / 2 = 10.5
in curried form, a function takes its arguments

one-by-one

Lambda Calculus ! BGR, Fall05 10

Type SignaturesType Signatures

• Area: can write function in two ways

– un-curried: # * " ' (, given b, h as a pair of

values, the function returns area

– curried: # ' (" ' () , given b, returns a

function to calculate area when given h(height)

Lambda Calculus ! BGR, Fall05 11

Free and Bound VariablesFree and Bound Variables

• Bound variable: x is bound when there is a

corresponding %x in front of the % expression:

• Free variable: x is not bound (analogous to a

variable inherited from an encompassing

imperative scope)

(% y. z) (% z. z)

free occurrence of z

bound occurrence of zbinding occurrence of z

((% y. y) y) is y
bound free

Lambda Calculus ! BGR, Fall05 12

Free and Bound VariablesFree and Bound Variables

• x is free in x, free(x) = x

• x is free (bound) in Y Z if x is free (bound) in

Y or in Z, free(YZ)= free(Y)) free(Z)

• x ! V, then x free (bound) in %V.Y iff it

occurs free (bound) in Y. All occurrences of

elements of V are bound in % V.Y,

 free(%x.M) = free(M) - {x}

• x free (bound) in (Y), if x is free (bound) in Y

Sethi, p550

Lambda Calculus ! BGR, Fall05 13

SubstitutionSubstitution

• Idea: function application is seen as a kind of

substitution which simplifies a term

– ((%x.M) N) as substituting N for x in M ; written

as {N | x} M

• Rules - Sethi, p551

1. If free variables of N have no bound occurrences

in M, then {N | x} M formed by replacing all free

occurrences of x in M by N.

Lambda Calculus ! BGR, Fall05 14

SubstitutionSubstitution

plus & %a.%b. a+b

then (plus 2) & %b. 2+b but if we evaluate (plus b 3) we get
into trouble!

(plus b 3) = (%a.%b. a+b b 3)

= (%b. b+b 3)

= 3 + 3 = 6

(plus b 3) = (%a.%c. a+c b 3)

= (%c. b+c 3)

= b + 3, what we expected!

problem:

b is a bound

variable; need

to rename before

substitute.

Lambda Calculus ! BGR, Fall05 15

SubstitutionSubstitution

2. If variable y free in N and bound in M, replace

binding and bound occurrences of y by a new

variable named z. Repeat until case 1. applies.

• Examples

{u | x} x = u {u | x} (x u) = (u u)

{%x.x | x} x = %x.x {u | x} y = y

{u | x} %x.x = %x.x

{u | x} (%u.x) = {u | x} (%z.x) = %z.u

{u | x} (%u.u) = {u | x} (%z.z) = %z.z

Examples of need for

change of variables.

Lambda Calculus ! BGR, Fall05 16

ReductionsReductions

• "*reduction (%x.M) N = {N | x} M with above
rules

• #*reduction (%x.M) = %z.{z | x} M, if z not free
in M (allows change of bound variable names)

• $-reduction (% x.(M x)) = M, if x not free in M
(allows stripping off of layers of indirection in
function application)

• See Sethi, Figure 14.1, p 553 for rules about "*
equality of terms

Lambda Calculus ! BGR, Fall05 17

ExampleExample

(%xyz . (xz (yz))) (%x. x) (%y. y), 2 #*reds + fully parenthesize

= [{ (%abz .(a z (b z))) (%x .x)} (%y .y)]

= [{ (%bz. ((%x.x) z (b z))) } (%y .y)], {%x.x | a}

= [{ %bz. (((%x.x) z) (b z))} (%y .y)], fully parenthesize

= [{%bz. (z (b z))} (%y .y)], {z | x}

= [{ %z. (z ((%y .y) z))}], {%y.y | b}

= { (%z. z z)}, {z | y}

• Note: we picked the order of "*reductions here

 Evaluate (%xyz . xz (yz)) (%x. x) (%y. y)

Lambda Calculus ! BGR, Fall05 18

Substitution Rules Substitution Rules cf Sethi cf Sethi p 555, GHH p 49p 555, GHH p 49

M {N | x} M

x N

y M

if M a variable, then if M " x get M, else get N (3.1 GHH)

PQ {N | x} P {N | x} Q

result of substitution applied to function application is
to apply that substitution to the function and its
argument and then perform the resulting
application(3.2 GHH)

Lambda Calculus ! BGR, Fall05 19

Substitution Rules Substitution Rules cf Sethi cf Sethi p 555, GHH p 49p 555, GHH p 49

M {N | x} M

3.3a) %x .P %x .P

never substitute for a bound variable within its scope

3.3b) %y .P %y .P

if there are no free occurrences of x in P

3.3c) %y .P %y .{N | x} P

when there are no free occurrences of y in N

3.3d) %y .P %z .{N | x} { z | y} P

when there is a free occurrence of y in N and z is not
free in P or N, substitute z for y in P and continue.

Lambda Calculus ! BGR, Fall05 20

Substitution RulesSubstitution Rules

• All these checks are aimed at ensuring that we
don’t link variable occurrences that are
independent!

• Our example ((% a.% b.a+b) b), would use 3.3d
to change variables before doing the
substitution

• Normal form of a term - a form which can
allow no further " or $ reductions

– No remaining ((%x.M) N), called a redex or
term which can be reduced

Lambda Calculus ! BGR, Fall05 21

Example Example GHH, p50GHH, p50

{y | x} % y. x y use 3.3d to change bound var

% z. {y | x} ({z | y} (x y)) apply 3.2 for fcn appln

% z. {y | x} ({z | y} (x) {z | y} (y)) apply 3.1 twice

% z. {y | x} (x z) apply 3.2

% z. ({y | x} (x) {y | x} (z)) apply 3.1 twice

% z. y z final result;

compare this to what we started with!

Lambda Calculus ! BGR, Fall05 22

Church Rosser PropertyChurch Rosser Property

• Fundamental result of %-calculus:

– Result of a computation is independent of the
order in which "-reductions are applied

– Leads to referential transparency in functional
PL’s

– Another interpretation is that most terms in the %
-calculus have a normal form, a form that cannot
be reduced any simpler; Church Rosser says if a
normal form exists, then all reduction sequences
lead to it

Lambda Calculus ! BGR, Fall05 23

Normal FormNormal Form

• Does every %-expression have a normal form? NO,
because there are terms which cannot be simplified,
yet they contain redices

– (%x.x x) (%x.x x) = (%y. y y) (%x.x x) , #-reduction

 = (%x.x x) (%x.x x), "-reduction

this term has no normal form

– (%x.x x x) (%x.x x x) = (%y. y y y) (%x.x x x) , #-red

= (%x.x x x) (%x.x x x) (%x.x x x),"-red

this term grows as we apply "-reductions!

Lambda Calculus ! BGR, Fall05 24

Normal FormNormal Form

– If add6 & %x. x+6, twice & %f%x. f (f x), what is
value of (twice add6)?

(twice add6) = (%f.%z.f (f z)) (%x.x+6)

= %z. ((%x.x+6) ((%x.x+6) z))

= %z. ((%x.x+6) (z+6))

= %z. (z + 12), normal form

– normal form of {%x. ((%z.z x) (%x.x))} y?

{%x. ((%z.z x) (%x.x))} y = {%x. ((%x.x) x)} y

 = {%x. x} y

 = y

free

bound

Lambda Calculus ! BGR, Fall05 25

Equality of TermsEquality of Terms

• Reduce each term to its normal form and

compare

• But whether or not a term has a normal form

is undecidable (related to halting problem for

Turing machies)

• Same term may have terminating and

nonterminating "-reduction sequences; if at

least one terminates, use its result as the

normal form for that term

Lambda Calculus ! BGR, Fall05 26

Church Rosser PropertyChurch Rosser Property

• (GHH)Theorem 1: If a %-expression reduces to a

normal form, it is unique

• (GHH)Theorem 2: If we always reduce leftmost

redex first, the reduction sequence will terminate in

a normal form, if it exists.

– ….A….B… both A and B are redices. if first % in A is to

the left of first % in B, then A is to the left of B

– A redex to left of all other redices in a %-expression is

leftmost

Lambda Calculus ! BGR, Fall05 27

Church Rosser PropertyChurch Rosser Property

• (Sethi) Theorem: For %-expressions M,P,Q, let +

stand for a sequence of # and "-reductions. if M +P

and M +Q then , a term R such that P +R and Q+

R

– Says all reduction sequences progress towards the same

end result if they all terminate

M

P Q

R

Lambda Calculus ! BGR, Fall05 28

““Proof of CR by ExampleProof of CR by Example””

(%x.%y.x-y) ((%z.z) 2) ((%r.r+2) 3)

substituting for x first:

= (%y.((%z.z) 2) - y) ((%r.r+2) 3)

= (%y.2-y) ((%r.r+2) 3)

= 2 - ((%r.r+2) 3)

= 2 - 5

= -3

first eval
second eval

~ f g h

Lambda Calculus ! BGR, Fall05 29

““Proof of CR by ExampleProof of CR by Example””

(%x.%y.x-y) ((%z.z) 2) ((%r.r+2) 3)

substitute for y first:

= (%x.x- ((%r.r+2) 3)) ((%z.z) 2)

= (%x.x - 5) ((%z.z) 2)

= (((%z.z) 2) - 5)

= (2 - 5)

= -3, the same result!

 substituting for x first:

= (%y.((%z.z) 2) - y) ((%r.r+2) 3)

= (%y.2-y) ((%r.r+2) 3)

= 2 - ((%r.r+2) 3)

= 2 - 5

= -3

Lambda Calculus ! BGR, Fall05 30

Call by NameCall by Name

• Can result in some parameter being
evaluated several times - inefficient

• Evaluates arguments only when they are
needed (Algol60 thunks)

• Abandoned in modern PLs because of
inefficiency

• However, guaranteed to reach a normal form
if it exists

Lambda Calculus ! BGR, Fall05 31

Call by ValueCall by Value

• Efficient

• Potentially does a calculation that may not be

used (if fcn is not strict in that parameter)

• Can lead to non-terminating computation

– Used in C, Pascal, C++, functional languages

• Often obtains a normal form in real

programs

Lambda Calculus ! BGR, Fall05 32

Call by NeedCall by Need

• Lazy evaluation - once we evaluate an
argument, then memoize its value to use
again, if needed

• Inbetween two other methods: value and
name

• Accomplished by embedding a pointer to a
value instead of the argument itself in the
expression. Then, when value is first
calculated, it is saved so it will be available
for other uses

Lambda Calculus ! BGR, Fall05 33

Call by NeedCall by Need

• Allows use of unbounded streams of input as

well

– What if we need a function to generate list(n), a

list of length n?

– hd (tl (list(n))) needs only the first 2 elements to

be generated; system will only evaluate this many

elements which prefix the list.

Lambda Calculus ! BGR, Fall05 34

Reduction OrderReduction Order

• Distinguishing order of applying "-reductions

only matters when some reduction order

leads to a non-terminating computation

• Sethi, p560:

– Leftmost outermost redex first is call by name

(normal order)

– Leftmost, innermost redex first is call by value

Where inner and outer refer to nesting of terms

(% yz. (%x.x) z (y z)) (% x.x)

Lambda Calculus ! BGR, Fall05 35

Reduction OrderReduction Order

• Start with fully parenthesized expression:

– (%v. e) (i) - always reduce e first

– (c b) (ii) - if c is not of form (i), then reduce c
until it is of that form. Then, we have a choice as
to how to proceed:

• call by name: reduce (c b) without further

reducing inside c or b.

• call by value: reduce any redices in c, then

those in b, and then reduce (c b).

Lambda Calculus ! BGR, Fall05 36

Example 1Example 1

(Sethi, p560) {[%y.%z. ((%x.x) z) (y z))] (%x.x)} = (c b)

call by value: reduce c. [%y.%z.(z (y z))] (%x.x) = (c’ b) where b

already reduced. reduce (c’ b) yielding

 %z.(z ((%x.x) z)) = %z.(z (c” b”)). reduce (c” b”) which yields

%z.(z z), the final term.

call by name: c is an abstraction (form i). so instantiate b directly

into c yielding %z.(((%x.x) z) ((%x.x) z)) = % z. (c* b*)

now reduce c* so we get an abstraction (form i.), yielding z. then

can perform final reduction of %z.(z ((%x.x) z)), yielding

 %z. z z, the final term, same as above.

Lambda Calculus ! BGR, Fall05 37

Example 2Example 2

(((%x.%y.x) z) ((%r.r r) (%s. s s))) = (c b).

call by value: reduce c to yield ((%y.z) ((%r.r r) (%s. s s))) which is

((%y.z) (c’ b’)). reduce (c’ b’) yielding

 ((%y.z) ((%s.s s) (%s. s s))). we end up with a similar term b”.

repeating this reduction will result in a non-terminating

computation

call by name: reduce c to yield ((%y.z) ((%r.r r) (%s. s s))). now

substitute b into the reduced c, yielding z, because there is no

bound y in %y.z. z is the normal form for the above term, by

definition.

Lambda Calculus ! BGR, Fall05 38

Example 3Example 3

{(%z. (%x.x+6) ((%x.x+6) z)) 1} = { c b }

(c’ , b’)

call by value: reduce redices in c = (c’ b’) where b’ = (c” b”).

(c” b”) evaluates to b’ = z+6, yielding {(%z. (%x.x+6) (z+6)) 1}.

now evaluating (c’ b’) yields {(%z. (z+6)+6) 1} = {(%z. z+12) 1}

now evaluating {c b} yields 1 + 12 = 13.

call by name: c is of correct form, an abstraction (form i.). so

substitute b into c yielding ((%x.x+6) ((%x.x+6) 1)) = (c* b*).

substitute b* into c* yielding ((%x.x+6) 1) + 6 = (c^ b^) + 6.

substitute b^ into c^ yielding (1 + 6) + 6 = 7+6 = 13.

c” b”

