OOPLs - call graph
construction

e Compile-time analysis of reference variables and
fields

— Determines to which objects (or types of objects) a
reference variable may refer during execution
— Primarily hierarchy-based methods
* Class hierarchy analysis (CHA)
* Rapid type analysis (RTA)
— Incorporating flow of control
» Tip-Palsberg class analyses (XFA)

OOPIs CallGphConst, FO5 © BGRyder

Example
cf Frank Tip, OOPSLA’00

static void main(){ class A {

B bl = new B(); foo(){..}

A al = new A(); }

£(bl); class B extends A{ A
) g(bl); foo() {..}
tati id £(A a2
static voi (B a2){ class C extends B{ B

a2.foo();
} foo() {.} /
static void g(B b2){ }

B b3 = b2; class D extends B{ C D

b3 = new C(); foo(){..}

b3.foo(); }
}

OOPIs CallGphConst, FO5 © BGRyder

Reference Analysis

 OOPLs need type information about objects to
which reference variables can point to resolve
dynamic dispatch

e Often data accesses are indirect to object fields
through a reference, so that the set of objects that
might be accessed depends on which object that
reference can refer at execution time

* Need to pose this as a compile-time program
analysis with representations for reference
variables/fields, objects and classes.

OOPIs CallGphConst, FO5 © BGRyder

Reference Analysis

 Many reference analyses developed over past 10+
years address problem using different algorithm
and program representation choices that affect
precision and cost

— Class analyses use an abstract object (with or without
fields) to represent all objects of a class

— Points-to analyses use object instantiations, grouped by
some mechanism (e.g., creation sites)

e The analysis can incorporate information about
flow of control in the program or ignore it
— Flow sensitivity (accounts for statement order)
— Context sensitivity (separates calling contexts)

OOPIs CallGphConst, FO5 © BGRyder

Reference Analysis

e Program representation used for analysis can
incorporate reachability of methods as part of the
analysis or assume all methods are reachable

e Techniques can be differentiated by their solution
formulation (that is, kinds of relations) and
directionality used

— e.g., for assignments

P = q, interpreted as
Pts-to(q) C Pts-to(p) vs. Pts-to(q) = Pts-to(p)

OOPIs CallGphConst, FO5 © BGRyder

Class Hierarchy Analysis

e First method for reference analysis was CHA by
Craig Chamber’s group (UWashington)

— Idea: look at class hierarchy to determine what classes
of object can be pointed to by a reference declared to
be of class A,

* in Java this is the subtree in inheritance hierarchy rooted at A,
cone (A)

— and find out what methods may be called at a virtual
call site

— Makes assumption that whole program is available
— Ignores flow of control
— Uses 1 abstract object per class

J. Dean, D. Grove, C. Chambers, Optimization of OO Programs Using Static
Class Hierarchy, ECOOP’95

OOPIs CallGphConst, FO5 © BGRyder

CHA Example

cf Frank Tip, OOPSLA’00

static void main(){ class A {
B bl = new B(); , 77T ==p foo(O{..}
A al = new A(); I }
f(bl); : class B extends A{ A
g(bl); | foo() {..}
} I
. . 1 i
static void f(A a2){ , class C extends B{ \
a2.foo();
) Syt 7 foo() {..} /
S ——_—"a L
\\\ / p
static void g(B b\27{~\/: class D extends B{ ‘ C D
/ foo(){..}

B b3 = b2; /
b3 = new C();
b3.foo(); ~.

Cone(Declared_type(receiver))

OOPIs CallGphConst, FO5 © BGRyder

CHA Example

static void main(){ ¢class A {
B bl = new B(); foo(){..}
A al = new A(); }
f(bl); class B extends A{
g(bl); foo() {..}
} }
static void £(A a2){ Ljass C extends B{
a2.foo(); f00 N
} O {.} f(A)
static void g (B b2){
B b3 = b2; class D extends B{
b3 = new C(); foo () {-}
b3.foo(); }

r'd

A.foo() B.foo() C.foo() D.foo()

Call Graph

OOPIs CallGphConst, FO5 © BGRyder

More on CHA

e Type of receiver needn’t be uniquely resolvable to
devirtualize a call
— Need applies-to set for each method (the set of classes
for which this method is the target when the runtime
type of the receiver is one of those classes)

* At a call site, take set of possible classes for receiver and
intersect that with each possible method’s applies-to set.

 If only one method’s set has a non-empty intersection, then
invoke that method directly

e Otherwise, need to use dynamic dispatch at runtime

— Also can use runtime checks of actual receiver type
(through reflection) to cascade through a small number
of choices for direct calls, given predictions due to
static or dynamic analysis

OOPIs CallGphConst, FO5 © BGRyder

Rapid Type Analysis

e Improves CHA

e Constructs call graph on-the-fly, interleaved with
the analysis

e Only expands calls if has seen an instantiated
object of appropriate type

— Ignores classes which have not been instantiated as
possible receiver types

* Makes assumption that whole program is
available

e Uses 1 abstract object per class

D. Bacon and P. Sweeney, ‘ Fast Static Analysis of C++
Virtual Function Calls”’, OOPSLA’96

OOPIs CallGphConst, FO5 © BGRyder

RTA Example

cf Frank Tip, OOPSLA’00
static void main(){ class A {
B bl = new B(); fm=-ly foo(){..}
A al = new A(); ! }
f(bl); : class B extends A{ A
g(bl); 1 foo() {..}
1
} _ . I }
static void £(A a2){ 1 7 class C extends B{ B
a2.foo(); ’
’\ ! // foo() {..}
} N,
==
static void g(B b2){ // class D extends B{ C D
B b3 = b2; , foo(){-}

b3 = new C();
b3.foo(); ~.

OOPIs CallGphConst, FO5 © BGRyder 11

RTA Example

static void main(){ class A {

B bl = new B(); foo(){..}
A al = new A(); }
f(bl); class B extends A{
g(bl); foo() {..}
} }
static void f(A a2){ .),55 ¢ extends B{
} a2.foo(); foo() {..}
static void g (B b2){ }
B b3 = b2; class D extends B{
b3 = new C(); foo(){..}
b3.foo();
}

A.foo() B.foo() C.foo() D.foo()

Call Graph

OOPIs CallGphConst, FO5 © BGRyder 12

Comparisons

Bacon-Sweeney, OOPSLA’96
class A {

public :
virtual int foo(){ return 1; };
}i
class B: public A {
public :
virtual int foo(){ return 2; };
virtual int foo(int i) { return i+l; };
}i
void main() {
B* p = new B; CHA resolves result2 call uniquely
int resultl = p->foo(1); |4 B foo() because B has no
;{“’qris;?tz p->foo() s subclasses, however it cannot do the
int result3 g->foo(); |same for the result3 call.
} RTA resolves the result3 call uniquely
because only B has been instantiated.

OOPIs CallGphConst, FO5 © BGRyder 13

Type Safety Limitations

Bacon-Sweeney, OOPSLA’96
e CHA and RTA both assume type safety of the

code they examine A

//#1 foo ()
void* x = (void*) new B

B* q = (B*) x;//a safe downcast

int casel = g->foo()

//#2

void* x = (void*) new A B foo()

B* q = (B*) x;//an unsafe downcast £ .
oo(int

int case2 = g->foo()//probably no error ()

//#3

void* x = (void*) new A

B* g = (B*) x;//an unsafe downcast
int case3 = gq->fo00(666)//runtime error

These analyses can’t distinguish these 3 cases!

OOPIs CallGphConst, FO5 © BGRyder 14

Experimental Comparison

Bacon and Sweeney, OOPSLA’96

| Benchmark | Lines | Description 1
sched 5,712 | RS/6000 Instruction Timing Simulator
1xx 11,157 | TDL specification to C++ stub-code translator
lcom 17,278 | Compiler for the “L” hardware description language
hotwire 5,335 | Scriptable graphical presentation builder
simulate 6,672 | Simula-like simulation class library and example
idl 30,288 | SunSoft IDL compiler with demo back end
taldict 11,854 | Taligent dictionary benchmark
deltablue 1,250 | Incremental dataflow constraint solver
richards 606 | Simple operating system simulator

Table 1: Benchmark Programs. Size is given in non-blank lines of code

OOPIs CallGphConst, FO5 © BGRyder

Data Characteristics

* Frequency of execution matters

— Direct calls were 51 % of static call sites but
only 39 % of dynamic calls

— Virtual calls were 21 % of static call sites but
were 36 % of dynamic calls

e Results they saw differed from previous
studies of C++ virtuals

— Importance of benchmarks

OOPIs CallGphConst, FO5 © BGRyder

Static Resolution

s 100%
]
2 80%
k7]
=
© 60%
=
£
S 40%
©
©
8 20%
<
[+]
z 0%

sched

Figure 4: Resolution of User Virtual Call Sites (Static)

M Unresolved/Polymorphic
Unresolved/Not Executed
O Unresolved/Monomorphic
B Resolved by RTA

O Resolved by CHA
ElResolved by UN

hotwire
simulate

Programs

idl
taldict
deltablue
richards

OOPIs CallGphConst, FO5 © BGRyder

Dynamic Resolution

100%

80%

60%

Calls (%)

40%

20%

Figure 5: Resolution of User Virtual Calls

namic)

0%

sched

=
£
(o]
s}

hotwire
simulate

Program

taldict
deltablue
richards

M Unresolved/Polymorphic
O Unresolved/Monomorphic
Ed Resolved by RTA
Resolved by CHA

Bl Resolved by UN

VUL 1> Catupicuing, 1'V0 W DUINY Uct

Findings

e RTA was better than CHA on virtual function
resolution, but not on reducing code size

— Inference is that call graphs constructed have same
node set but not same edge set!

e Claim both algorithms cost about the same
because the dominant cost is traversing the cfg’s
of methods and identifying call sites

e Claim that RTA is good enough for call graph
construction so that more precise analyses are not
necessary for this task

OOPIs CallGphConst, FO5 © BGRyder

Dimensions of Analysis

 How to achieve more precision in analysis
for slightly increased cost?
— Incorporate flow in and out of methods

— Refine abstract object representing a class to
include its fields

— Incorporate locality of reference usage in
program into analysis rather than 1
‘references’ solution over the entire program

— Always use reachability criteria in constructing
call graph

OOPIs CallGphConst, FO5 © BGRyder

20

Tip and Palsberg Analyses

e Tip and Palsberg, OOPSLA’00, explored
several algorithms that incorporated flow,
which are more precise than RTA

— Track classes propagated into and out of
method calls through parameter passing

— Objects have one representative object per
class, with or without distinct fields

— Reference expressions are grouped by class or
by method

Tip and Palsberg, “Scalable Propagation-based Call Graph
Construction Algorithms”, OOPSLA’00

OOPIs CallGphConst, FO5 © BGRyder 21

XTA Analysis

Tip and Palsberg, “Scalable Propagation-based Call Graph
Construction Algorithms”, OOPSLA’00

e Start at main() method.

* Do a reachability propagation of classes through

an on-the-fly constructed call graph
— At any point in the algorithm there is a set of reachable
methods R, starting from main()

» Associate a set of classes that reach method M, S,,
(this is having all references of a class with one
abstract representative per method, not one
representative for the entire program)

e Uses abstract objects with fields to represent all
instances of a class

OOPIs CallGphConst, FO5 © BGRyder 22

XTA Analysis

* Q: How to expand virtual e.m() in reachable

method M ?
* Expand virtual call only by appropriate C € S,; where C €
cone(declaredType(e)) to call M’
— Make M’ reachable

— Add cone(paramType(M’))N S,, to S,,; (adds possible
actual param types for M’ from M, to set of classes that
reach M’)

— Add cone(returnType(M’)) N S, to Sy,
— Add C to S,
* For each object created in M (new A()), if M is reachable,
then A € Sy,
* For each field read =*.f in M, if M is reachable, then S,;C S,,
* For each field write *.f = in M, if M is reachable, then
cone(declaredType(f)) N S,; € S;

OOPIs CallGphConst, FO5 © BGRyder

Example of XTA

23

D

{ A, B} cf Frank Tip, OOPSLA’00
static void main(){ class A {
B bl = new B(); ;7 T ==pfoo(){..}
A al = new A(); : } A
£(bl); I class B extends A{
g(bl); ‘, foo() {..}
) {AB} ! B
static void f£(a a){ ' class C extends B{
} a2.foo(); ~— y £00() {.} //
®c /¥ C
static void g(B b2){ class D extends B{
B b3 = b2; p foo(){..}
b3 = new C(); ,' }

b3.foo();

OOPIs CallGphConst, FO5 © BGRyder

24

XTA Example

A.foo() B.foo() C.foo() D.foo()

Call Graph

OOPIs CallGphConst, FO5 © BGRyder

Variants of XTA

e CTA - uses one abstract object per class,
without fields; keeps one program-wide
representative for each type of reference

e MTA - uses one abstract object per class
with fields distinguished but keeps one
program-wide representative for each type
of reference

 FTA - uses one abstract object per class
without fields; has one representative per
method for each type of reference

OOPIs CallGphConst, FO5 © BGRyder

25

26

Analysis Precision

FTA

\

CHA—RTA—+> CTA XTA— 0-CFA

\ MTA/

arrows show increasing cost and precision

OOPIs CallGphConst, FO5 © BGRyder 27

Details

e Algorithm is iterative and must go until hit
a fixed point.

e Conditions are expressed as constraints
which must be true for the solution

— Additions to reference sets trigger more

propagation of new information through the
cfg’s and calls

e Impressive results

OOPIs CallGphConst, FO5 © BGRyder 28

Java Program Dataset

benchmark # classes # methods | #fields (reference-typed) # virtual call sites
Hanoi 44 379 232 (107) 285
Ice Browser 76 761 500 (253) 922
mBird 2,050 17,946 6739 (4284) 3,269
Cindy 468 4,449 3075 (1677) 5,085
CindyApplet 468 4 449 3075 (1677) 2,502
eSuite Sheet 588 5,590 4305 (1412) 4,459
eSuite Chart 733 8,302 5448 (2141) 8,074
javaFig 1.43 161 2,108 1526 (971) 3.482
BLOAT 282 2,677 1255 (541) 6,623
JAX 6.3 309 2,754 1252 (579) 3.836
javac 210 1,512 1107 (406) 3.621
Res. System 2332 21,495 12487 (6334) 23.640

OOPIs CallGphConst, FO5 © BGRyder

Findings

e Paper compares all 4 methods with RTA
with regard to call graph construction

e Measures precision improvements over

RTA

— Given that reference r can point to an RTA-calculated
set of types program-wide, then XTA reduces the size
of this set by 88%, on average, per method.

e The reachable methods set (i.e. call graph
nodes) is minimally reduced over that of

RTA

OOPIs CallGphConst, FO5 © BGRyder

29

30

Findings, cont.

e The number of edges in the call graph is
significantly reduced by XTA over RTA
(.3%-29% fewer, 7% on average)

e Data gives comparison restricted to those
calls that RTA found to be polymorphic
and how these analyses can improve on that
finding.

— Claim that the reduction in edges are for those

calls that RTA found to be polymorphic, and
often call sites that become monomorphic

OOPIs CallGphConst, FO5 © BGRyder

Findings

benchmark RTA XTA
uneached nono poly unreao hed mono poly
Hanoi 34.0°% 616% 4.4% 340% 627% 3.3%
Ice Browser 40% 91.4% 4.7% 40% 916% 4.5%
mBird 1429 73.4% 123% 17.4% 709% 11.7%
Cindy 49.3% 450% 5.7% 49.4°% 455% 5.0%
CindyApplet 72.0°% 246% @ 34% 723% 245% 3.2%
eSuite Sheet 28.1% 6B4% 35% 282% 69.1% 2.8%
eSuite Chart 13.3% 766% 10.1% 157% 76.0% B.3%
javaFig 1.43 9.1% B71% 39% 9.7% 872% 3.1%
BLOAT 6.6% B24% 11.1% 70% 822% 108%
JAXE3 18.7% 759% 5.4% 189% 768% 4.3%
javac 3.0% 776% 19.4% 30% 77.7% 19.3%
Res. System 18.1% 720% 99% 182% 740% 7.9%
AVERAGE 7.8% 7.0%

OOPIs CallGphConst, FO5 © BGRyder

Conclusions

e Using distinct reference representatives per
method adds precision

e Using distinct fields per abstract object
does not seem to add much precision

— Note: other authors disagree with this finding

— Possibilities include
e no-fields,
* fields of an abstract object per class,

* fields of a representative of a group of object
creation sites.

OOPIs CallGphConst, FO5 © BGRyder 33

