
OOPls CallGphConst, F05 © BGRyder 1

OOPLs - call graph

construction
• Compile-time analysis of reference variables and

fields

– Determines to which objects (or types of objects) a

reference variable may refer during execution

– Primarily hierarchy-based methods

• Class hierarchy analysis (CHA)

• Rapid type analysis (RTA)

– Incorporating flow of control

• Tip-Palsberg class analyses (XFA)

OOPls CallGphConst, F05 © BGRyder 2

Example

static void main(){

B b1 = new B();

A a1 = new A();

f(b1);

g(b1);

}

static void f(A a2){

a2.foo();

}

static void g(B b2){

B b3 = b2;

b3 = new C();

b3.foo();

}

class A {

foo(){..}

}

class B extends A{

foo() {…}

}

class C extends B{

foo() {…}

}

class D extends B{

foo(){…}

}

cf Frank Tip, OOPSLA’00

A

B

C D

OOPls CallGphConst, F05 © BGRyder 3

Reference Analysis

• OOPLs need type information about objects to
which reference variables can point to resolve
dynamic dispatch

• Often data accesses are indirect to object fields
through a reference, so that the set of objects that
might be accessed depends on which object that
reference can refer at execution time

• Need to pose this as a compile-time program
analysis with representations for reference
variables/fields, objects and classes.

OOPls CallGphConst, F05 © BGRyder 4

Reference Analysis

• Many reference analyses developed over past 10+
years address problem using different algorithm
and program representation choices that affect
precision and cost

– Class analyses use an abstract object (with or without
fields) to represent all objects of a class

– Points-to analyses use object instantiations, grouped by
some mechanism (e.g., creation sites)

• The analysis can incorporate information about
flow of control in the program or ignore it

– Flow sensitivity (accounts for statement order)

– Context sensitivity (separates calling contexts)

OOPls CallGphConst, F05 © BGRyder 5

Reference Analysis

• Program representation used for analysis can

incorporate reachability of methods as part of the

analysis or assume all methods are reachable

• Techniques can be differentiated by their solution

formulation (that is, kinds of relations) and

directionality used

– e.g., for assignments

p = q, interpreted as

Pts-to(q) ! Pts-to(p) vs. Pts-to(q) = Pts-to(p)

OOPls CallGphConst, F05 © BGRyder 6

Class Hierarchy Analysis
• First method for reference analysis was CHA by

Craig Chamber’s group (UWashington)

– Idea: look at class hierarchy to determine what classes
of object can be pointed to by a reference declared to
be of class A,

• in Java this is the subtree in inheritance hierarchy rooted at A,
cone (A)

– and find out what methods may be called at a virtual
call site

– Makes assumption that whole program is available

– Ignores flow of control

– Uses 1 abstract object per class

J. Dean, D. Grove, C. Chambers, Optimization of OO Programs Using Static

Class Hierarchy, ECOOP’95

OOPls CallGphConst, F05 © BGRyder 7

CHA Example

static void main(){

B b1 = new B();

A a1 = new A();

f(b1);

g(b1);

}

static void f(A a2){

a2.foo();

}

static void g(B b2){

B b3 = b2;

b3 = new C();

b3.foo();

}

class A {

foo(){..}

}

class B extends A{

foo() {…}

}

class C extends B{

foo() {…}

}

class D extends B{

foo(){…}

}

cf Frank Tip, OOPSLA’00

A

B

C D

Cone(Declared_type(receiver))

OOPls CallGphConst, F05 © BGRyder 8

CHA Example
static void main(){

B b1 = new B();

A a1 = new A();

f(b1);

g(b1);

}

static void f(A a2){

a2.foo();

}

static void g(B b2){

B b3 = b2;

b3 = new C();

b3.foo();

}

class A {

foo(){..}

}

class B extends A{

foo() {…}

}

class C extends B{

foo() {…}

}

class D extends B{

foo(){…}

}

main

A.foo() B.foo() C.foo() D.foo()

f(A) g(B)

Call Graph

OOPls CallGphConst, F05 © BGRyder 9

More on CHA

• Type of receiver needn’t be uniquely resolvable to
devirtualize a call

– Need applies-to set for each method (the set of classes
for which this method is the target when the runtime
type of the receiver is one of those classes)

• At a call site, take set of possible classes for receiver and
intersect that with each possible method’s applies-to set.

• If only one method’s set has a non-empty intersection, then
invoke that method directly

• Otherwise, need to use dynamic dispatch at runtime

– Also can use runtime checks of actual receiver type
(through reflection) to cascade through a small number
of choices for direct calls, given predictions due to
static or dynamic analysis

OOPls CallGphConst, F05 © BGRyder 10

Rapid Type Analysis

• Improves CHA

• Constructs call graph on-the-fly, interleaved with
the analysis

• Only expands calls if has seen an instantiated
object of appropriate type

– Ignores classes which have not been instantiated as
possible receiver types

• Makes assumption that whole program is
available

• Uses 1 abstract object per class

D. Bacon and P. Sweeney, “ Fast Static Analysis of C++

Virtual Function Calls”, OOPSLA’96

OOPls CallGphConst, F05 © BGRyder 11

RTA Example

static void main(){

B b1 = new B();

A a1 = new A();

f(b1);

g(b1);

}

static void f(A a2){

a2.foo();

}

static void g(B b2){

B b3 = b2;

b3 = new C();

b3.foo();

}

class A {

foo(){..}

}

class B extends A{

foo() {…}

}

class C extends B{

foo() {…}

}

class D extends B{

foo(){…}

}

cf Frank Tip, OOPSLA’00

A

B

C D

OOPls CallGphConst, F05 © BGRyder 12

RTA Example

static void main(){

B b1 = new B();

A a1 = new A();

f(b1);

g(b1);

}

static void f(A a2){

a2.foo();

}

static void g(B b2){

B b3 = b2;

b3 = new C();

b3.foo();

}

class A {

foo(){..}

}

class B extends A{

foo() {…}

}

class C extends B{

foo() {…}

}

class D extends B{

foo(){…}

}

main

A.foo() B.foo() C.foo() D.foo()

f(A) g(B)

Call Graph

OOPls CallGphConst, F05 © BGRyder 13

Comparisons

class A {

public :

 virtual int foo(){ return 1; };

};

class B: public A {

public :

 virtual int foo(){ return 2; };

 virtual int foo(int i) { return i+1; };

};

void main() {

 B* p = new B;

 int result1 = p->foo(1);

 int result2 = p->foo() ;

 A* q = p;

 int result3 = q->foo();

}

CHA resolves result2 call uniquely

to B.foo() because B has no

subclasses, however it cannot do the

same for the result3 call.

RTA resolves the result3 call uniquely

because only B has been instantiated.

Bacon-Sweeney, OOPSLA’96

OOPls CallGphConst, F05 © BGRyder 14

Type Safety Limitations

• CHA and RTA both assume type safety of the

code they examine
//#1

void* x = (void*) new B

B* q = (B*) x;//a safe downcast

int case1 = q->foo()

//#2

void* x = (void*) new A

B* q = (B*) x;//an unsafe downcast

int case2 = q->foo()//probably no error

//#3

void* x = (void*) new A

B* q = (B*) x;//an unsafe downcast

int case3 = q->foo(666)//runtime error

A

B

foo()

foo()

foo(int)

These analyses can’t distinguish these 3 cases!

Bacon-Sweeney, OOPSLA’96

OOPls CallGphConst, F05 © BGRyder 15

Experimental Comparison

Bacon and Sweeney, OOPSLA’96

OOPls CallGphConst, F05 © BGRyder 16

Data Characteristics

• Frequency of execution matters

– Direct calls were 51% of static call sites but

only 39%of dynamic calls

– Virtual calls were 21% of static call sites but

were 36% of dynamic calls

• Results they saw differed from previous

studies of C++ virtuals

– Importance of benchmarks

OOPls CallGphConst, F05 © BGRyder 17

Static Resolution

OOPls CallGphConst, F05 © BGRyder 18

Dynamic Resolution

OOPls CallGphConst, F05 © BGRyder 19

Findings

• RTA was better than CHA on virtual function

resolution, but not on reducing code size

– Inference is that call graphs constructed have same

node set but not same edge set!

• Claim both algorithms cost about the same

because the dominant cost is traversing the cfg’s

of methods and identifying call sites

• Claim that RTA is good enough for call graph

construction so that more precise analyses are not

necessary for this task

OOPls CallGphConst, F05 © BGRyder 20

Dimensions of Analysis

• How to achieve more precision in analysis
for slightly increased cost?

– Incorporate flow in and out of methods

– Refine abstract object representing a class to
include its fields

– Incorporate locality of reference usage in
program into analysis rather than 1
‘references’ solution over the entire program

– Always use reachability criteria in constructing
call graph

OOPls CallGphConst, F05 © BGRyder 21

Tip and Palsberg Analyses

• Tip and Palsberg, OOPSLA’00, explored

several algorithms that incorporated flow,

which are more precise than RTA

– Track classes propagated into and out of

method calls through parameter passing

– Objects have one representative object per

class, with or without distinct fields

– Reference expressions are grouped by class or

by method
 Tip and Palsberg, “Scalable Propagation-based Call Graph

Construction Algorithms”, OOPSLA’00

OOPls CallGphConst, F05 © BGRyder 22

XTA Analysis

• Start at main() method.

• Do a reachability propagation of classes through
an on-the-fly constructed call graph

– At any point in the algorithm there is a set of reachable
methods R, starting from main()

• Associate a set of classes that reach method M, SM

(this is having all references of a class with one
abstract representative per method, not one
representative for the entire program)

• Uses abstract objects with fields to represent all
instances of a class

 Tip and Palsberg, “Scalable Propagation-based Call Graph

Construction Algorithms”, OOPSLA’00

OOPls CallGphConst, F05 © BGRyder 23

XTA Analysis

• Q: How to expand virtual e.m() in reachable
method M ?

• Expand virtual call only by appropriate C " SM where C "
cone(declaredType(e)) to call M’

– Make M’ reachable

– Add cone(paramType(M’))# SM to SM’ (adds possible

actual param types for M’ from M, to set of classes that
reach M’)

– Add cone(returnType(M’)) # SM’ to SM

– Add C to SM’

• For each object created in M (new A()), if M is reachable,

then A " SM

• For each field read =*.f in M, if M is reachable, then Sf ! SM

• For each field write *.f = in M, if M is reachable, then

cone(declaredType(f)) # SM ! Sf

OOPls CallGphConst, F05 © BGRyder 24

Example of XTA

static void main(){

B b1 = new B();

A a1 = new A();

f(b1);

g(b1);

}

static void f(A a2){

a2.foo();

}

static void g(B b2){

B b3 = b2;

b3 = new C();

b3.foo();

}

class A {

foo(){..}

}

class B extends A{

foo() {…}

}

class C extends B{

foo() {…}

}

class D extends B{

foo(){…}

}

cf Frank Tip, OOPSLA’00{A,B}

{B,C}

{A,B}

A

B

C D

OOPls CallGphConst, F05 © BGRyder 25

XTA Example

static void main(){

B b1 = new B();

A a1 = new A();

f(b1);

g(b1);

}

static void f(A a2){

a2.foo();

}

static void g(B b2){

B b3 = b2;

b3 = new C();

b3.foo();

}

class A {

foo(){..}

}

class B extends A{

foo() {…}

}

class C extends B{

foo() {…}

}

class D extends B{

foo(){…}

}

main

A.foo() B.foo() C.foo() D.foo()

f(A) g(B)

Call Graph

OOPls CallGphConst, F05 © BGRyder 26

Variants of XTA

• CTA - uses one abstract object per class,
without fields; keeps one program-wide
representative for each type of reference

• MTA - uses one abstract object per class
with fields distinguished but keeps one
program-wide representative for each type
of reference

• FTA - uses one abstract object per class
without fields; has one representative per
method for each type of reference

OOPls CallGphConst, F05 © BGRyder 27

Analysis Precision

CHA RTA CTA

FTA

MTA

XTA 0-CFA

arrows show increasing cost and precision

OOPls CallGphConst, F05 © BGRyder 28

Details

• Algorithm is iterative and must go until hit

a fixed point.

• Conditions are expressed as constraints

which must be true for the solution

– Additions to reference sets trigger more

propagation of new information through the

cfg’s and calls

• Impressive results

OOPls CallGphConst, F05 © BGRyder 29

Java Program Dataset

OOPls CallGphConst, F05 © BGRyder 30

Findings

• Paper compares all 4 methods with RTA
with regard to call graph construction

• Measures precision improvements over
RTA
– Given that reference r can point to an RTA-calculated

set of types program-wide, then XTA reduces the size
of this set by 88%, on average, per method.

• The reachable methods set (i.e. call graph
nodes) is minimally reduced over that of
RTA

OOPls CallGphConst, F05 © BGRyder 31

Findings, cont.

• The number of edges in the call graph is
significantly reduced by XTA over RTA
(.3%-29% fewer, 7% on average)

• Data gives comparison restricted to those
calls that RTA found to be polymorphic
and how these analyses can improve on that
finding.

– Claim that the reduction in edges are for those
calls that RTA found to be polymorphic, and
often call sites that become monomorphic

OOPls CallGphConst, F05 © BGRyder 32

Findings

OOPls CallGphConst, F05 © BGRyder 33

Conclusions

• Using distinct reference representatives per
method adds precision

• Using distinct fields per abstract object
does not seem to add much precision

– Note: other authors disagree with this finding

– Possibilities include

• no-fields,

• fields of an abstract object per class,

• fields of a representative of a group of object
creation sites.

