
OOPLs-MethodResol F05 BGR 1

Method Resolution Approaches

• Static - procedural languages (w/o fcn ptrs)

• Dynamically determined by data values

– C with function pointers

– Compile-time analysis can estimate possible callees

• Dynamically determined by receiver type

– Some polymorphic OOPLs use runtime type of first
parameter to specialize behaviors

– Some OOPLs also use runtime types of other arguments

– Problem: how to have an efficient implementation of this
kind of dynamic dispatch?

OOPLs-MethodResol F05 BGR 2

Dynamic Dispatch

• Choices PLs have to make:

• When resolve function targets?

• What to look at to do the method resolution? (e.g.,

receiver runtime type? Argument runtime types?)

• How to divide the work between runtime and compile

time?

• Emphasize flexibility or performance?

OOPLs-MethodResol F05 BGR 3

Method Redefinition

• Overriding - replacing a superclass’s

implementation of a method, by one with

identical signature (except receiver type)

– Method must be accessible, non-static

• Overloading - providing more than one

method with same name, but different

signatures to distinguish them

• Simple cases of both are intuitive

OOPLs-MethodResol F05 BGR 4

Inheritance
• Overriding can widen method visibility

• Can override instance variables, but can still get
to superclass variable using super

• Preferred inheritance uses all private data and
provides observer and mutator methods

– Using geta(), seta() methods means that changing
superclass structure will not affect subclasses

• Access to
– Methods is by run-time type of object referenced

– Instance variables is by compile-time type of reference

OOPLs-MethodResol F05 BGR 5

Possible Cases
• Inheritance, but all method names are unique

• Inheritance with overriding
– Lookup happens at run-time based only on receiver’s

class
– Next slide: A,B,C with respect to f(); A,B wrt h()

• Inheritance with overloading (different method
signatures)
– Java: Lookup establishes best match type signature at

compile-time based on arguments’ and receiver’s
declared classes; actual binding done by run-time lookup
to match selection

– Next slide, A,B wrt s()

OOPLs-MethodResol F05 BGR 6

Overriding Example

How to resolve a.toString()?

1. At run-time, determine class

of the object (e.g., a refers to an B object).

2. Start lookup for method with

same signature in class B.

3. Proceed up inheritance

hierarchy until find closest

superclass with same

signature (i.e., method

toString()); this may be

class B itself

Object

A

B C

toString()

f()

h(int i)

toString()

 f()

toString()

h(int i)

f()

A a = new B();

OOPLs-MethodResol F05 BGR 7

Java Overriding Example

//overriding - fcns have

//same signature

A a1 = new B();

A a2 = new C();

B b = new B();

A a = new A();

a.f();//A’s f()

a1.f();//B’s f()

a2.f();//C’s f()

b.h(0);//B’s h()

a1.h(2);//B’s h()

a2.h(1);//A’s h()

a.h(3);//A’s h()

Object

A

B C

toString()

f()

h(int i)

toString()

 f()

toString()

h(int i)

f()

OOPLs-MethodResol F05 BGR 8

C++ Approach to Overriding

• If return type and signature of 2 functions match exactly, the 2nd is a

redeclaration of the first and is an override

• If signatures of 2 functions match exactly, but return types differ, then

2nd declaration is in error

• If signatures differ in number or type of arguments, the 2 function

instances are OVERLOADED. (return type not considered as part of

signature here)

S. Lippman,

C++ Primer

OOPLs-MethodResol F05 BGR 9

Overloading

• Java chooses to optimize dynamic dispatch by
partially resolving references through
preprocessing at compile-time

– Need to use declared type and number of arguments +
receiver type to help select an unique method

• Results in a not-just-dynamic lookup procedure
because pre-selection is done

– Different from multi-methods (e.g., in Cecil) where
dynamic lookup is based on run-time types of receiver
and the arguments!

OOPLs-MethodResol F05 BGR 10

Example
//overloading -when signatures

//not same, must look at type

//matching between arg and

//param

a.s(3.);//A's s()

a1.s(3.);//A's s() because

 //arg is a double and B’s

 //s() expects an int

b.s(0);//B's s()

b.s(1.0);//A's s()

 //casting is not type

 //conversionin Java

((A) a1).h(4);//uses B’s h()

 //matching rules are not

 //always straight-forward

a1.s(0);//A's s()

A a1 = new B();

A a2 = new C();

B b = new B();

A a = new A();

Object

A

B C

toString()

f()

h(int i)

s(int i)

toString()

 f()

toString()

h(int i)

f()

s(double d)

OOPLs-MethodResol F05 BGR 11

Overloading Resolution in Java

• At compile-time, assemble a set of methods whose
parameters are type compatible with the
arguments and receiver

• For each invocation

• Look at compile-time class of receiver and arguments

• Move up class hierarchy from declared receiver type
class trying for a match (possibly widening argument
or receiver types)

• Collect all possible matching methods into a set and
then find the most specific match (defined on next
slide)

OOPLs-MethodResol F05 BGR 12

Most Specific Match

• If find unique method with exact match in type
and number of arguments and compatible receiver
type, choose it.

• Otherwise,
• If any method f has arguments + receiver that can be

assigned to any other method g in the set, discard g;
Repeat as much as possible.

• If only 1 method remains, use it as template.

• If more than 1 method remains, the invocation is
ambiguous, so the invoking code is invalid. Compile-
time error!!

OOPLs-MethodResol F05 BGR 13

Overloading Resolution in Java

Run-time Overriding

• At run-time, use run-time type of receiver to

start search up class hierarchy for function

exactly matching previously defined

template. (Note: ignore run-time types of

arguments)

• Stop going up the hierarchy when find first

match to template type. Overloading

guarantees there will be at least one match.

OOPLs-MethodResol F05 BGR 14

Java Example (cf Don Smith)

• Class hierarchy as shown

contains 4 variants of

method f()

• Signatures[...] include

compile-time types of

receiver and argument.

• Objects named for their

compile-time type

A:f(X) f:[A, X]

X

Y

R: f(A) f:[R, A]

S: f(X) f:[S, X]

T: f(Y) f:[T, Y]

OOPLs-MethodResol F05 BGR 15

Java Example

• a.f(x)

– signature f:[A, X]

– check classes A

– matches f:[A, X]

• s.f(a)

– signature f:[S, A]

– check classes S, R, A

– matches f:[R, A]

A:f(X) f:[A, X]

X

Y

R: f(A) f:[R, A]

S: f(X) f:[S, X]

T: f(Y) f:[T, Y]

OOPLs-MethodResol F05 BGR 16

• s.f(y)

– signature f:[S, Y]

– checks S, R, A

– matches [S, X], [R, A],

[A, X].

• check pairwise for most

specific

[S, X] with [R, A]

[S, X] with [A, X]

[R, A] with [A, X]

A:f(X) f:[A, X]

X

Y

R: f(A) f:[R, A]

S: f(X) f:[S, X]

T: f(Y) f:[T, Y]

[S, X] is choice

If any method f has arguments +

receiver that can be assigned

to any other method g in the set,

discard g;

Java Example

OOPLs-MethodResol F05 BGR 17

Java Example

• r.f(x)

– signature f:[R, X]

– checks R, A

– matches [R, A], [A, X]

• check pair

– R << A but A >> X

– incomparable

– no match

– compile-time ERROR!

A:f(X) f:[A, X]

X

Y

R: f(A) f:[R, A]

S: f(X) f:[S, X]

T: f(Y) f:[T, Y]

OOPLs-MethodResol F05 BGR 18

Java Example

• t.f(y)

– signature f:[T, Y]

– checks T, S, R, A

– matches [T, Y], [S, X],

[R, A], [A, X]

• pairwise check and get

[T, Y]

A:f(X) f:[A, X]

X

Y

R: f(A) f:[R, A]

S: f(X) f:[S, X]

T: f(Y) f:[T, Y]

OOPLs-MethodResol F05 BGR 19

Java ExampleT t = new T();

X x = new Y();

…

t.f(x);

signature is [T, X]

checks T, S, R, A

matches [S,X], [R,A], [A,X]

specificity eliminates all but [S, X]

at run-time receiver is class T and argument
is class Y. however, call will be resolved to
f(X) in class S and not to f(Y) in class T,
even though t.f(Y) is a perfect match to the
run-time types!

A:f(X) f:[A, X]

X

Y

R: f(A) f:[R, A]

S: f(X) f:[S, X]

T: f(Y) f:[T, Y]

OOPLs-MethodResol F05 BGR 20

Java Example - 2

X x = new X();

Y y = new Y();

X xy = (X) y;

x.f(x) -- invokes X:f(X)

x.f(y) -- invokes X:f(Y) since more specific than X:f(X)

x.f(xy) -- invokes X:f(X)

y.f(x) -- invokes Y:f(X), since more specific than X:f(X)

xy.f(x) -- invokes Y:f(X) which overrides X:f(X) for Y

receivers.

X: f(X),f(Y) f:[X, X]

 f:[X, Y]

Y: f(X) f:[Y, X]

