Points-to Analysis for Java

« Historical roots in points-to analysis for C
— Steensgaard’s algorithm
— Andersen’s algorithm
— Flow- and context sensitivity

* Field-sensitive analysis for Java

— Based on Andersen for C augmented with
handling for fields and dynamic dispatch

OOPLs - Points-to Analysis, F05 BGR

Flow & Context Sensitivity
in Analysis
* Flow sensitivity

— Analysis calculates a different solution for each
program point

— Analysis captures the sequential order of
executions of statements

* Context sensitivity

— Analyze a method separately for different
calling contexts (e.g., call sites)

OOPLs - Points-to Analysis, F05 BGR

Points-to Analyses for C

* Popular flow- and context-insensitive formulations

of points-to analysis
— Scalable to large codes (MLOC)
— Good enough for ensuring safety of some optimizations
— Good for program understanding applications

— Not great for applications needing precise def-use information (e.g.,
program slicing, testing)

e Solution procedure utilizes unification or inclusion
constraints
— P =Q either implies PtsTo(P) = PtsTo(Q) or PtsTo(Q) C PtsTo(P)

« Extended to points-to analyses for OOPL reference
variables

OOPLs - Points-to Analysis, F05 BGR

Points-to Analyses for C

« Steensgaard’s algorithm (POPL’96)

— Uses unification constraints so that for pointer
assignments, p = q, algorithm makes PtsTo(p)=PtsTo(q)
* This union operation is done recursively for multiple-level pointers
— Reduces the size of the points-to graph (in terms of both
nodes and edges)

* Almost linear solution time in terms of program size, O(n) using fast
union-find algorithm

* Imprecision stems from merging points-to sets

— One points-to set per pointer variable over entire
program

OOPLs - Points-to Analysis, F05 BGR

cf M Shapiro and S. Horwitz, “Fast and Accurate
Flow-insensitive Points-to Analysis” POPL’97

Steensgaard - Example
1 2 1 2

a—b—c a— b+— c

—> .

4 ta|—re
d e 3
l.a = &b @
1 2
2.b = &c a— b +—|c
3.d = &e 4| a e |4
4.a = &d

Points-to sets found: pigTo (a)={b,d}
PtsTo(b,d)={c,e}

OOPLs - Points-to Analysis, F05 BGR

Steensgaard Solution
Procedure - At a glance

« Find all pointer assignments in program (after
conversion to single dereference form)

* Form set of points-to graph nodes from pointer
variables/fields and variables (in the heap or
whose address has been taken)

— Examine each statement, in arbitrary order, and
construct points-to edges

* Merge nodes (and edges) where indicated by unification
constraints (only 1 out edge labelled * per pointer variable)

« After (almost) linear pass over these assignments,
points-to graph is complete

OOPLs - Points-to Analysis, F05 BGR

Points-to Analysis for C

* Andersen’s analysis (Thesis 1994)

— Uses inclusion constraints so that for pointer
assignments, p = q, algorithm makes

Pts-to(q) C Pts-to(p)

— Points-to graph is larger (i.e., has more nodes) than
Steensgaard’s and more precise

— Cubic worst case complexity in program size, O(n?)

— One points-to set per pointer variable over entire
program

OOPLs - Points-to Analysis, F05 BGR

Andersen - Example

int **a;

int *b,*d, *g;

int c,e,f;

l.a = &b

2.b &c

3.4 = &e

4.a &d

5.d = &f [—2
6.g = d Steensgaard @ | b |¢
7.9

= *g solution 4 d e |4

OOPLs - Points-to Analysis, F05 BGR

Andersen’s Solution Procedure
- At a glance

* Find all pointer assignments in program

* Form set of points-to graph nodes from pointer
variables/fields and variables on the heap or whose
address is taken

— Examine each statement, in arbitrary order, and construct points-
to edges
* Need to create more edges when see p = q type assignments so that all outgoing
points-to edges from q are copied to be outgoing from p (i.e. processing
inclusion constraints)
* If new outgoing edges are added subsequently to q during the algorithm, they
must be also copied to p

» Work results in O(n?) worst case cost
— Treat parameter - argument associations like assignment statements

OOPLs - Points-to Analysis, F05 BGR

Example of Points-to Analysis

class A { void m(X p) {..} }
class B extends A {

X f;

void m(X q) { this.f=q; b——0;

B b = new B(); thisg , f
X x = new X();

A.m() not analyzed because /

it's unreachable. q

OOPLs - Points-to Analysis, F05 BGR

Constraints Generated

B b =new B(); PtsTo(b) 2 {0y}
X x = new X(); PtsTo(x) 2 {oy }
A a=Db; PtsTo(b) C PtsTo(a)
a.m(x);

— Treated like this , = a; q = x; which generates:
PtsTo(a) © PtsTo(this), PtsTo(x) € PtsTo(q)

Then we process the code within m()

— this,, .f=q
A satisfying assignment for these constraints is a
points-to solution for this code.

OOPLs - Points-to Analysis, F05 BGR

OOPLs - Points-to Analysis, FO5 BGR Analysis for Java Using Annotated Constraints”

FieldSens Points-to Analysis

Based on Andersen’s points-to analysis but also add object
reference fields to points-to graph as suffices for reference
variables

— e.g., class A has fields f,g then p=new A(), means p.f and p.g are in

the points-to graph

Define and solve a system of annotated set-inclusion
constraints

— Handles virtual calls by simulation of run-time method lookup

— Models the fields of objects

— Extended BANE (UC Berkeley) constraint solver

Analyzes only possibly executed code

— Ignores unreachable code from libraries
Rountev, A. Milnova, B. Ryder, “Points-to

OOPSLA’01

FieldSens Example

static void main(){

B bl = new B(); al_____ , o0,
A al = new A();
f(bl);

bl— > O
g(bl);

} a2/

static void f(A a2){
a2.foo();

} b2 b3
static void g (B b2){

B b3 = b2; Points-to Gr‘aph

b3 = new C(); summarizes

b3.foo(); reference/object
} relationships Ny

OOPLs - Points-to Analysis, F05 BGR

FieldSens Example

cf Frank Tip, OOPSLA’00

static void main(){ class A {

B bl = new B();

foo(){..}

A al = new A(); }

f(bl);

g(bl), a2— og class B extends A{
} » foo() {..}
static void f(A a2){

a2.foo(); class C extends B{
} l foo() {..}

static void g(B b2){1 }
B b3 = b2; class D extends B({
b3 = new C(); .~ foo(){..}
b3.foo(); -~ }

}

OOPLs - Points-to Analysis, F05 BGR \
O 14

FieldSens Characteristics
* Only analyzes methods reachable from
main()
» Keeps track of individual reference
variables and fields
* Groups objects by their creation site

* Incorporates reference value flow in
assignments and method calls

OOPLs - Points-to Analysis, F05 BGR

FieldSens Findings

« Empirical testing found
— Significant precision gains over RTA at call sites
found to be polymorphic by CHA

— Could use points-to info in client analysis
* Object read-write information
* Synchronization removal (thread-local)
 Stack allocation (method-local)

OOPLs - Points-to Analysis, F05 BGR

Imprecision of Context

Insensitivity
class Y extends X { ... }

class A {
X f;

¥ this,
A a = new A() ;
a.m(new ;
A aa = new A() ; aa %
aa.m(new Y()); — 193

a —;I 0,

OOPLs - Points-to Analysis, F05 BGR

Object-sensitive Analysis

* Form of functional context sensitivity for flow-
insensitive analysis of OO languages

* Formulate an object-sensitive Andersen’s (points-to)
analysis
— Analysis of instance methods and constructors
distinguished for different contexts
— Receiver objects used to distinguish calling contexts

— Empirical evaluation vs. context-insensitive FieldSens
analysis
* this, formals and return variables (effectively) replicated

OOPLs - Points-to Analysis, F05 BGR

Example: Object-sensitive

« Precision gains for problems such as def-

Analysis
class A {
x f- a 01 02
o) { i 01
thisy 2.f=q"3; } [thisyn
¥ o
93
A a = new A() ; this,
a.m(new X()) ;
A aa = new A() ;
aa.m(new Y()) ; aa—»0; 0,
ObjSens Findings

uses for object fields and side effect analysis
(per statement) for practically no additional

cost
* Clients

— Program test coverage metrics

— Program slicing

— Program understanding tools

A. Milanova, A. Rountev, and B. Ryder. Parameterized object-sensitivity for
points-to and side-effect analyses for Java. In International Symposium on
Software Testing and Analysis, pages 1-11, 2002.

OOPLs - Points-to Analysis, F05 BGR

20

