
OOPLs - Points-to Analysis, F05 BGR

1

Points-to Analysis for Java

• Historical roots in points-to analysis for C

– Steensgaard’s algorithm

– Andersen’s algorithm

– Flow- and context sensitivity

• Field-sensitive analysis for Java

– Based on Andersen for C augmented with

handling for fields and dynamic dispatch

OOPLs - Points-to Analysis, F05 BGR

2

Flow & Context Sensitivity

in Analysis
• Flow sensitivity

– Analysis calculates a different solution for each

program point

– Analysis captures the sequential order of

executions of statements

• Context sensitivity

– Analyze a method separately for different

calling contexts (e.g., call sites)

OOPLs - Points-to Analysis, F05 BGR

3

Points-to Analyses for C

• Popular flow- and context-insensitive formulations
of points-to analysis
– Scalable to large codes (MLOC)

– Good enough for ensuring safety of some optimizations

– Good for program understanding applications

– Not great for applications needing precise def-use information (e.g.,
program slicing, testing)

• Solution procedure utilizes unification or inclusion
constraints
– P = Q either implies PtsTo(P) = PtsTo(Q) or PtsTo(Q) ! PtsTo(P)

• Extended to points-to analyses for OOPL reference
variables

OOPLs - Points-to Analysis, F05 BGR

4

Points-to Analyses for C

• Steensgaard’s algorithm (POPL’96)

– Uses unification constraints so that for pointer
assignments, p = q, algorithm makes PtsTo(p)=PtsTo(q)
• This union operation is done recursively for multiple-level pointers

– Reduces the size of the points-to graph (in terms of both
nodes and edges)
• Almost linear solution time in terms of program size, O(n) using fast

union-find algorithm

• Imprecision stems from merging points-to sets

– One points-to set per pointer variable over entire
program

OOPLs - Points-to Analysis, F05 BGR

5

Steensgaard - Example

a b c

d e

1 2 a b c

d e

1 2

1.a = &b

2.b = &c

3.d = &e

4.a = &d

cf M Shapiro and S. Horwitz, “Fast and Accurate

Flow-insensitive Points-to Analysis” POPL’97

PtsTo(a)={b,d}

PtsTo(b,d)={c,e}

Points-to sets found:

3
4

a b c

d e

1 2

44

OOPLs - Points-to Analysis, F05 BGR

6

Steensgaard Solution

Procedure - At a glance

• Find all pointer assignments in program (after
conversion to single dereference form)

• Form set of points-to graph nodes from pointer
variables/fields and variables (in the heap or
whose address has been taken)

– Examine each statement, in arbitrary order, and
construct points-to edges

• Merge nodes (and edges) where indicated by unification
constraints (only 1 out edge labelled * per pointer variable)

• After (almost) linear pass over these assignments,
points-to graph is complete

OOPLs - Points-to Analysis, F05 BGR

7

Points-to Analysis for C

• Andersen’s analysis (Thesis 1994)

– Uses inclusion constraints so that for pointer
assignments, p = q, algorithm makes

 Pts-to(q) ! Pts-to(p)

– Points-to graph is larger (i.e., has more nodes) than
Steensgaard’s and more precise

– Cubic worst case complexity in program size, O(n3)

– One points-to set per pointer variable over entire
program

OOPLs - Points-to Analysis, F05 BGR

8

Andersen - Example

a b c

d e

1 2

int **a;

int *b,*d,*g;

int c,e,f;

1.a = &b

2.b = &c

3.d = &e

4.a = &d

5.d = &f

6.g = d

7.g = *a

4 3

f

g

5

6

6

7

a b c

d e

1 2

4 4

Steensgaard

solution

OOPLs - Points-to Analysis, F05 BGR

9

Andersen’s Solution Procedure

- At a glance
• Find all pointer assignments in program

• Form set of points-to graph nodes from pointer
variables/fields and variables on the heap or whose
address is taken

– Examine each statement, in arbitrary order, and construct points-
to edges

• Need to create more edges when see p = q type assignments so that all outgoing
points-to edges from q are copied to be outgoing from p (i.e. processing
inclusion constraints)

• If new outgoing edges are added subsequently to q during the algorithm, they
must be also copied to p

• Work results in O(n3) worst case cost

– Treat parameter - argument associations like assignment statements

OOPLs - Points-to Analysis, F05 BGR

10

Example of Points-to Analysis

class A { void m(X p) {..} }

class B extends A {
 X f;
 void m(X q) { this.f=q;
}
}

B b = new B();

X x = new X();

A a = b;

a.m(x);

q

b o1

a

thisB.m f

x o2

A.m() not analyzed because
it’s unreachable.

OOPLs - Points-to Analysis, F05 BGR

11

Constraints Generated

• B b = new B(); PtsTo(b) " {oB }

• X x = new X(); PtsTo(x) " {oX }

• A a = b; PtsTo(b) ! PtsTo(a)

• a.m(x);

– Treated like thism = a; q = x; which generates:
PtsTo(a) ! PtsTo(thism), PtsTo(x) ! PtsTo(q)

• Then we process the code within m()

– thism .f = q

• A satisfying assignment for these constraints is a
points-to solution for this code.

OOPLs - Points-to Analysis, F05 BGR

12

FieldSens Points-to Analysis

• Based on Andersen’s points-to analysis but also add object

reference fields to points-to graph as suffices for reference

variables

– e.g., class A has fields f,g then p=new A(), means p.f and p.g are in

the points-to graph

• Define and solve a system of annotated set-inclusion

constraints

– Handles virtual calls by simulation of run-time method lookup

– Models the fields of objects

– Extended BANE (UC Berkeley) constraint solver

• Analyzes only possibly executed code

– Ignores unreachable code from libraries
Rountev, A. Milnova, B. Ryder, “Points-to

Analysis for Java Using Annotated Constraints”

OOPSLA’01

OOPLs - Points-to Analysis, F05 BGR

13

FieldSens Example
static void main(){

B b1 = new B();

A a1 = new A();

f(b1);

g(b1);

}

static void f(A a2){

a2.foo();

}

static void g(B b2){

B b3 = b2;

b3 = new C();

b3.foo();

}

b3

oC

b1 oB

a1 oA

a2

b2

Points-to Graph
summarizes
reference/object
relationships

OOPLs - Points-to Analysis, F05 BGR

14

FieldSens Example
static void main(){

B b1 = new B();

A a1 = new A();

f(b1);

g(b1);

}

static void f(A a2){

a2.foo();

}

static void g(B b2){

B b3 = b2;

b3 = new C();

b3.foo();

}

class A {

foo(){..}

}

class B extends A{

foo() {…}

}

class C extends B{

foo() {…}

}

class D extends B{

foo(){…}

}

a2 oB

b3 oC

oB

cf Frank Tip, OOPSLA’00

OOPLs - Points-to Analysis, F05 BGR

15

FieldSens Characteristics

• Only analyzes methods reachable from

main()

• Keeps track of individual reference

variables and fields

• Groups objects by their creation site

• Incorporates reference value flow in

assignments and method calls

OOPLs - Points-to Analysis, F05 BGR

16

FieldSens Findings

• Empirical testing found

– Significant precision gains over RTA at call sites

found to be polymorphic by CHA

– Could use points-to info in client analysis

• Object read-write information

• Synchronization removal (thread-local)

• Stack allocation (method-local)

OOPLs - Points-to Analysis, F05 BGR

17

Imprecision of Context

Insensitivity
class Y extends X { … }

class A {
 X f;
 void m(X q) {

this.f=q ; }
}

A a = new A() ;
a.m(new X()) ;

A aa = new A() ;

aa.m(new Y()) ;

o2o1a

thisA.m q

o3 aa o4f

f

f

f

OOPLs - Points-to Analysis, F05 BGR

18

Object-sensitive Analysis
• Form of functional context sensitivity for flow-

insensitive analysis of OO languages

• Formulate an object-sensitive Andersen’s (points-to)
analysis
– Analysis of instance methods and constructors

distinguished for different contexts

– Receiver objects used to distinguish calling contexts

– Empirical evaluation vs. context-insensitive FieldSens
analysis
• this, formals and return variables (effectively) replicated

OOPLs - Points-to Analysis, F05 BGR

19

Example: Object-sensitive

Analysis

class A {
 X f;
 void m(X q) {

this.f=q ; }

}

A a = new A() ;
a.m(new X()) ;

A aa = new A() ;

aa.m(new Y()) ;

o2

f
o1a

thisA.m

o1 qA.m

o1
thisA.m.f=q o1 o1

o1

 this.f=q ;

o3 aa o4

o3thisA.m

o3qA.m

thisA.m.f=q o3 o3

f

OOPLs - Points-to Analysis, F05 BGR

20

ObjSens Findings
• Precision gains for problems such as def-

uses for object fields and side effect analysis
(per statement) for practically no additional
cost

• Clients

– Program test coverage metrics

– Program slicing

– Program understanding tools

 A. Milanova, A. Rountev, and B. Ryder. Parameterized object-sensitivity for

points-to and side-effect analyses for Java. In International Symposium on

 Software Testing and Analysis, pages 1–11, 2002.

