
!OPLs9-1 " BGR, Fall05
1

OOPLsOOPLs

Historical roots:

CLU language (B.Liskov and J.Guttag, “Abstraction and

Specification in Program Development”, out of print but copy on

reserve in Math Library)

– Encapsulation

– Specification of abstract datatypes

• requires, modifies, effects

– Mutability

– Equality checking

!OPLs9-1 " BGR, Fall05
2

Data Abstraction andData Abstraction and OOPLs OOPLs

– Abstraction interface

• Mutators, Observers, Constructors

• Abstraction function

• Representation invariant

– Iterators - C++ and Java examples

• Dynamic dispatch

– Overriding in inheritance hierarchy

– Overloading

– Efficient implementation strategies

!OPLs9-1 " BGR, Fall05
3

Data AbstractionData Abstraction

• Can use any internal representation for
storing queues as long as can make it
behave like a queue.

• Interface to the queue data abstraction is
same, no matter what the rep type.
– Knowledge of interface is sufficient to use this

queue code; (centralized dependence)

– Users can’t change the abstraction unless
allowed by interface.

– Can change rep type for efficiency without
disturbing users of the abstraction

!OPLs9-1 " BGR, Fall05
4

Example - QueueExample - Queue

• Type: first in, first out storage discipline

• Operations:

– enqueue(q,x) - adds x onto queue q

– qnull(q) - returns boolean check if q is empty

– qhd(q) - selects front element of queue q

– dequeue(q) - yields queue obtained by removing
front element of queue q

– Qerror - exception raised by qhd or dequeue
applied to an empty queue

!OPLs9-1 " BGR, Fall05
5

Possible ImplementationsPossible Implementations

• Using ‘a-list
enqueue(q,x) = q @ [x]; (*costly, sum of lengths of 2 lists*)

dequeue(x::q) = q (*cheap*)| dequeue nil = raise Qerror;

• Using user-defined datatype
datatype ‘a queue = empty | enqueue of ‘a queue * ‘a

fun dequeue (enqueue (empty,x)) = empty |

fun dequeue (enqueue(q,x)) = enqueue ((dequeue q), x) |

fun dequeue (empty) = raise Qerror;

• Using 2 ‘a-lists (one for adding and one for removing and
then have to switch when run out of removing list)

datatype ‘a queue = Queue of (‘a list * ‘a list)

normal form for this representation is maintained by function norm which has to
be called after every removal of an element.

fun norm (Queue ([],tail) = Queue ((reverse tail),[]) | norm q = q;

!OPLs9-1 " BGR, Fall05
6

SpecificationSpecification

• queue is a data abstraction containing integers

following a first in, first out discipline.

• Implementation separated from specification

• Operation described in terms of its type signature,

what it modifies, what it requires as a precondition

and its effect

– For templates (generics) allows use of type parameter

!OPLs9-1 " BGR, Fall05
7

CLU SpecificationCLU Specification

• Requires = constraints on the use of an

operation, if any

• Modifies = side effects on inputs

• Effects = defines operation behavior on

allowed inputs

!OPLs9-1 " BGR, Fall05
8

Operations SpecificationOperations Specification

enqueue = proc (q:queue, x: int) returns (queue)
modifies: q
effects: Adds x to q

dequeue = proc (q:queue) returns (queue)
modifies: q
requires: q be nonempty
effects: Returns q with one less element.

qhd = proc (q:queue) returns (int)
effects: Returns element at head of q
requires: q be nonempty.

Qnull = proc (q:queue) returns (bool)
effects: Returns true if q is empty, else false.

!OPLs9-1 " BGR, Fall05
9

MutabilityMutability

• Mutable data abstractions have values which can
change during execution.

– Used to model real-world entities

– Tricky to manage for shared objects

– Destructive operations are performed; more space
efficient

• Mutability is property of the abstract data type,
NOT the implementation
– Mutable types need mutable rep types

– Immutable types can use mutable or immutable rep
types

!OPLs9-1 " BGR, Fall05
10

MutabilityMutability

• Immutable data abstractions are assign-once

variables

– E.g., integers, points in a plane

– Safer for shared objects

– Operations on this type return new object of the

type with altered values.

– Creates need for garbage collection

!OPLs9-1 " BGR, Fall05
11

Classes of OperationsClasses of Operations

• Constructors

– Create objects of a datatype

• Mutators

– Modify objects of a datatype - enqueue,

dequeue

• Observers

– Given object of a datatype, return values

related to that object - qnull, qhd

!OPLs9-1 " BGR, Fall05
12

Equality CheckingEquality Checking

• Need to provide in the interface

• Can use a canonical representation

– E.g., rationals, R = Rat of int * int;

fun make (a,b:int) = Rat (a,b).

Then val x=make(1,2); val y=make(5,10); x=y isn’t true!

However, the following works:

make2(a,b)=(Rat(a div gcd(a,b), b div gcd(a,b)));

• Can also create own equality function within the
abstraction

Eg., fun equalrat(Rat(a,b),Rat(c,d)) = (a*d = c*b)

1 2

x

5 10

y

!OPLs9-1 " BGR, Fall05
13

Abstract Abstract DatatypeDatatype

• Can refer to abstract datatype and its rep
type separately

• Can refer to the mappings between these 2
worlds

– Abstraction Function: maps a rep object to its
corresponding abstract datatype object;
defines meaning of the representation

– Representation Invariant: statement of a
property that all legitimate reps of abstract
objects satisfy

!OPLs9-1 " BGR, Fall05
14

Abstraction FunctionAbstraction Function

• More than 1 rep value may represent same

abstract value

– Integer sets represented in arrays

[1,2] and [2,1] both are array reps of {1,2}

{1,2}
Integer sets{7}

[1,2] [2,1] [7]
Rep type is int arrays

!OPLs9-1 " BGR, Fall05
15

Representation InvariantRepresentation Invariant

• Think about (x,y) coordinates represented by

polar coordinates (length,angle).

g(r) = (r.ln *cos(r.ang), r.ln * sin(r.ang))

Then Invar(r)= (r.ln>0 and 0<= r.ang <=2#) or

 (r.ln = 0 and r.ang = 0)

• For int sets represented as an int array R,

Invar(R) = for all k,j, low (R) <= k < j <= high(R)

and R[k] != R[j] (since sets have no multiple

elements)

!OPLs9-1 " BGR, Fall05
16

CLU Generic FunctionsCLU Generic Functions

Search function on character data:
search = proc (v:char, b: array of char) returns (x:bool)

requires: b sorted in non-decreasing order

effects: true returned iff b[j]=v for some j

Generic search function:
search = proc [t:type](v:t, a: array[t]) returns (int)

requires: t has operations equal, lt: proctype (t,t) returns
(bool) such that t is totally ordered by lt, and a is sorted in
ascending order based on lt

effects: if v is in a, returns j such that a[j]=v; otherwise,
returns high(a)+1 (i.e., upper bnd on a +1)

!OPLs9-1 " BGR, Fall05
17

IteratorsIterators

• If abstract datatype is a collection of
objects, you may want to examine each
object in the collection

• How to accomplish this?

– Write a function in the interface that extracts
the objects, 1 by 1, performs some calculation
on them and then recreates the collection

– Copy the objects in the collection to an
immutable type (like sequence in CLU). Return
that to the user to use

!OPLs9-1 " BGR, Fall05
18

IteratorsIterators

• Provide a special function for the abstract
datatype: an iterator

elements = iter (s:intset) yields (int)

requires: s not be modified by calling loop body
(or consequences can’t be determined)

effects: yields elements of s one by one in
arbitrary order

• Iterators can be nested

– They operate as though each has its own copy
of the collection.

!OPLs9-1 " BGR, Fall05
19

Enumerations in JavaEnumerations in Java

• Java - Enumeration object keeps copy of
collection or a copy of a reference to it

– Affects whether or not changing the collection while
iterating disturbs the enumeration

– Use polymorphic container class and then downcast to
proper object type

• e.g., SetEnumeration returns Object type; needs to be cast to
actual type at each use

– Enumeration is a Java interface with standard
functions that classes which implement it must provide

!OPLs9-1 " BGR, Fall05
20

CC++ ++ Iterator Iterator ExampleExample
class stack { private: elt *s; int top; friend class stack_iter;

const int EMPTY = -1;

public: stack(){s = new elt[100]; top = -1;} …}

class stack_iter{//will enumerate stack from bottom to top of stack

private: elt *st; int n; int t;

//invariant: elements in st[0..n] have already been returned

 stack_iter(stack &goOver){ // creates copy of stack

t = goOver.top;

st = new elt[t+1];

for (int j=0; j<=t; ++j)

 st[j]=goOver.s[j];

n = goOver.EMPTY;} //initializes subscript pointing into copy

boolean getNext(elt &val){

if (n < t) {val = st[++n]; return 1;} else return 0;

 } }

!OPLs9-1 " BGR, Fall05
21

Iterators Iterators in Cin C++++

• Can’t define iterator as subclass of the

collection class

– Because then each iterator could only work

with respect to one collection object

• Can’t define iterator as member of the

collection class

– Because member functions have no way to

preserve state between calls (class vars are not

enough since they are shared by all objects)

!OPLs9-1 " BGR, Fall05
22

Iterators Iterators in Cin C++++

• There is NO natural subtyping relation

between iterators and the collections they

iterate over!

• Solution - break encapsulation to create an

iterator

– Use friend methods which lets iterator see into

the private collection instance variables

