Parsing

e TD parsing - LL(1)
— First and Follow sets
— Parse table construction

e BU Parsing
— Handle, viable prefix, items, closures, goto’s
— LR(k): SLR(1), LR(1), LALR()
e Problems with SLR

Aho, Sethi, Ullman, Compilers : Principles, Techniques and Tools

Aho + Ullman, Theory of Parsing and Compiling, vol I1.

Parsing © BGR, Fall2005

TD Parsing

Elimination of left recursion.
E — E a|f becomes E—=BA

A—aAlce
Example:
S—E S—E
E—-E+ T E—-TA
E—T —> A+ TAlcs
T —id T —id

Can also left factor the grammar removing
shared prefixes of right-hand-sides.

Parsing © BGR, Fall2005

Parse Tree

/N ;
7

/N
il
id + T A
HINN
id + T A
Parse tree converted from \ \
left recursive to right recursive. id ¢
TD Parsing

e Problem: predicting which nonterminal
to expand next, from a leading string of
symbols

e Idea: generate parse tree top down so its
frontier is always a sentential form

— Use First and Follow sets to understand the
shape of sentential forms possibly generated
by the grammar

Parsing © BGR, Fall2005

TD Stack Parser, EG

Stack Input Production ;:1; R

$S id+id+id$ Aot TAle
$E id+id+id$ S—=E T — id

$A T id+id+id$ E—-TA

$A +id+id$ T—id

$SA T id+id$ A—=+TA

$A +id$ T—1id

$SA T id$ A—-+TA

$A $ T — id

$ $ A—¢

See algm in ASU Fig 4.14, p 187

Parsing © BGR, Fall2005

How to mechanize?

e Define a to be string of nonterminals and
terminals

e First(a) is the set of terminals that begin
strings derivable from a.
If o Zp ¢, then ¢ is in First(c).

e Follow(A) is the set of terminals that can

appear directly to the right of A in a sentential
form

S E*> a A a 3 means a is in Follow(A).

If A can be rightmost symbol in a sentential form, that
is, XE*> aAd whered E*> g, then Follow(A)2
Follow(X).

Parsing © BGR, Fall2005

Example

First(S) = First(E) = First(T) = {id}
First(A)={+,¢ }

Follow(S) = Follow(E) = Follow(A) = {$}
Follow(T) = {+, $}
S—E
E—-TA
A—=+TAlc¢
T—id

Parsing © BGR, Fall2005

LL(k) Grammars

e Can choose next production to expand by
during TD phase, by looking k symbols ahead
into input

e Use First sets to choose production

e Use Follow sets to handle € cases

Parsing © BGR, Fall2005

Example: LL(1)

Nonterms\Inputs: id

S S—E

E E—-TA
T T—id
A

+

A—-+TA A—ce

Ambiguous or left recursive grammars
result in multiply defined entries in table

First(S) = First(E) = First(T) = {id}
First(A)={+,¢ }

Follow(S) = Follow(E) = Follow(A) = {$}
Follow(T) = {+, $}

Parsing © BGR, Fall2005

S—E
E—-T A

A—=+T A lc¢e

T —id

A View During TD Parsing

S
S derives a v, -
a string of terminals;
X is nonterminal at top
of stack, X derives y;
Initially
X==S,a==g¢,yis inpl}f

/
/

\
hd
/

partially
constructed
parse tree

v “

v
A

&
<

Parsing © BGR, Fall2005

A View Durlng BU Parsing

S E} aAw — ocBw,
so f is the handle.

partially

constructed,/
parse tree / -

B < >
w, a string of terminals

Parsing © BGR, Fall2005

Intuitive Comparison
S

W X z

LR(k) can recognize A — a knowing w, x, and First, (z) .
LL(k) can recognize A — o knowing only w and First,(x).
Therefore, the set of languages recognizable by LR(k) contain
those recognizable by LL(K).

Parsing © BGR, Fall2005

BU Parsing (Shift-Reduce)

Handle - part of
sentential form last

added in a rightmost
derivation.

BU parsing as
“handle hunting”

Rightmost derivation of

a+b+c, handles in red

(1)S —»E
(2)E—E+T
B)E—T
@) T —id

Parsing © BGR, Fall2005

S — E
— E+T
— E+1id

— E+T+id
— E+id+id
— T +id + id
— id + id + id

Shift-Reduce Parser, Example

Actions: shift, reduce, accept, error

Stack

$

$id1
$T

$E
$E+
$E +id2
SE+T
$E
$E+
$E +id3
SE+T
$E
$S

Parsing © BGR, Fall2005

Input
idl1 +id2 +id3 $

+id2 +id3 $
+id2 +id3 $
+id2 +id3 $
id2+id3 $
+id3 $
+id3 $
+id3 $

id3 $

&L L L FE

Action
shift
reduce (4)
reduce (3)
shift

shift
reduce(4)
reduce (2)
shift

shift
reduce (4)
reduce(2)
reduce (1)
accept

(1)S—E
(2)E—E+T
(3)E—T
@) T —id

Problems

Shift-reduce conflicts
S — if E then S | if E then S else S | other
On stack: if E then S
Input: else

Should shift trying for 2nd alternative or
reduce by first rule?

Reduce-reduce conflicts

if A — o and B — o both in grammar

When o on stack, how know which production
to choose?

Parsing © BGR, Fall2005

Predictive Parsing

 Top Down: LL(k), Bottom Up: LR(k)

e Avoids backtracking while parsing by
using lookahead into input

e NO cases where more than 1 action
possible

Parsing © BGR, Fall2005

LR(Kk)

e Left to right scan parsing does a
rightmost derivation in reverse, using k
symbols of lookahead into input

e Three flavors

— Simple LR, SLR(1)

e Cheap

* Doesn’t always work
- LR

* Most powerful

* Most expensive

Parsing © BGR, Fall2005

LR(k)

— LALR

e Intermediate in cost and power

e All SLR(1) languages are also LR(1), but
parsers generated by corresponding
grammars for the same language will
differ in size.

* LR(Kk) catches syntax errors as early as
possible in a left-to-right scan of the input

e Covers most programming languages

Parsing © BGR, Fall2005

LR Parsing

 DFA is embedded in parser which is a
PDA

* (topg.ck » INput_symbol) accesses a
particular entry in the parser table
— Shift to state s
— Reduce by A —
— Accept
— Error

* Goto: (state, top,,.) —> state

Parsing © BGR, Fall2005

LR Parser

Sty teSy Mbe, input

state\input /
‘Z Action/ goto table

stack

Parsing © BGR, Fall2005

20

LR Parsing

e Viable prefix - set of prefixes of right
sentential forms which can appear on a
stack of a shift/reduce parser

— Prefix of right sentential form that doesn’t
contain symbols beyond the handle

e Goto function is transition function of
DFA that recognizes viable prefixes of
the grammar

e Idea: continue to stack inputs until have
handle on top of stack and then reduce

Parsing © BGR, Fall2005

Building an SLR Parser

Need states, goto’s, Follow sets

Item - rule with embedded dot

S—.E

Closure of item I

IU{B—=y,ifA— a.Bfinl}

States built from items and their closures

Parsing © BGR, Fall2005

21

22

Example - States

S—E
E—-E+T
E—T
T—id

I,: S—E.
E—-E.+T

L: T—id.

Iy:

I.: E—E+T.

Parsing © BGR, Fall2005

S—.E

E—=.E+T Closure of
E—.T S E
T—.id

L E—T.

I,: E—E+.T
T —.id

23

Example - Goto’s + Follow sets

goto (0, E) =1
goto (0, T) =2
goto (4, T)=5

goto (0,id) =3
goto (1,+)=4
goto (4,id) =3

goto ({set of items} , X) =
closure {{[A - o X.p] I
[A = o .X B] in {set of items}}

where X is a terminal or nonterminal

Follow(S) = {$}

Follow(E) = Follow(T) = { +, $}

Parsing © BGR, Fall2005

24

Example - Parser Table

si, shift to state I; r(j) reduce by rule j

States\ inputs: goto’s

id + $ E T
0 s3 1 2
1 s4 accept
2 r(3) r(3)
3 r(4) r(4)
4 s3 5
5 r(2) r(2)

Example

Stack input action
0 idl +id2 $ s3
0idl 3 +id2 $ r(4), goto on T
0T2 +id2 $ r(3), goto on E
0OE1 +id2 $ s4
OE1+4 id2 $ s3
OE1+4id23 $ r(4), gotoon T
0OE1+4TS5 $ r(2), goto on E

OE1 $ accept

Parsing © BGR, Fall2005

25

26

SLLR(1) Parser Rules

If A—a.afisin state I, and goto(L;, a)
is I then (Ij,, a) transitions by shift r (sr)

If A—a. isinstate L, set action [j,a] to
reduce A — o for all a in Follow(A)

— Note: A !=S
IfS —E. in I, action (j,$) is accept

Any table entry not defined is error.

Parsing © BGR, Fall2005

Problems

e Shift-reduce conflicts happen when Ab can occur
in some sentential form and b € Follow(A).

S—-L=R I, S—.L=R
S —-R S—.R
L—*R R—.L
L —id L—.*R
R—L L—.
I,: S—L.=R()
R—L.(Q2

27

In I, shift when see = in input(item 1); reduce on = because =
in Follow(R) (item 2). Note: S - L =R — * R =R ..., but this
is not a rightmost derivation!

Parsing © BGR, Fall2005

28

Problems, cont.

Can see that rightmost derivation is:
S—=L=R—=L=L—-L=id—=*R=id—
*L=id— *id=1id

Therefore, should reduce *R to L. when see =,
not shift in order to get *R onto the stack.

Problem is that we can’t distinguish those Follow
elements corresponding to a rightmost derivation
in a specific context.

Parsing © BGR, Fall2005 29

Nomenclature in ASU
e Anitem [A — B .v] is valid for viable prefix
afifS Zp aAw=> afyw.

— Means can continue towards accumulating an
handle on the stack by shifting

— Previously, shift would have changed viable
prefix *R to nonviable prefix *R=

o If I is set of items valid for viable prefix § then

goto(I, X) is set of items valid for viable prefix
BX where X is terminal or nonterminal

Parsing © BGR, Fall2005 30

LR Parsing

LR items include a lookahead symbol,
(into the input) which helps in conflict
resolution

e Need new closure rule:
—For[A—a.By,a]itemadd [B—.d,b]

for every b in First(y a).
Example
I,: S—=.E,$ - initial item
E—.E +T,$ -closure initial item
E—-.T,$
E—.E+T,+ -closure 1stred item
E—.T +
T—.d,$ - closure 2nd red item
T —.id, + - closure 2nd blue item

Will write these in more compact form by
combining lookaheads.

Parsing © BGR, Fall200

31

32

Example, LR(1) Parser

I,;S—.E,$ I,: [goto (Iy, E)]
E—-.E+T,$%/+ S—E.,$
E—.T,$%+ S—E.+T,8$/+
T — .id , +/$ L,:[goto (I, , T)]

I:[goto(I, , +)] E—-T. $/+
E—-E+.T,$/+ I;: [goto (I, id)]
T —.id, $/+ T—id.,$+

L: [goto (I, T)]
E—-E+T., $+

Parsing © BGR, Fall2005 13

LR(1) Parser

 Reduce based on lookaheads in item
which are a subset of Follow set

e Rules similar to SLR
— Shift in I, [A — a . a B, b], goto (I, a) = I,
— Reduce [A = o..,b] reduceato Aonb

— Accept [S — E., $], accept on $

Parsing © BGR, Fall2005 3

LALR Parsing

e Idea: merge all states with common first
components in their LR(1) items

e Implementation problem: need to reduce
number of states to get smaller parser table
* Reduced size parser will perform

— Same as LR on correct inputs (will be parsed by
LALR)

— On incorrect inputs, LR may find error faster;
LALR will never do an incorrect shift but may do
some wrong reductions

Parsing © BGR, Fall2005

LALR Parsing

e Conceptually, build LALR(1) parser
from LR(1) parser
— Merge all states with same first components

— Union all goto’s of these merged states
(goto’s are independent of second
components)

e Correctness of conceptual derivation

— Can never produce a shift-reduce conflict or
else [A—a.,a]and [B —=f.ay,Db] existed
in some LR(1) state

Parsing © BGR, Fall2005

35

36

LALR, cont.

— But can create reduce-reduce conflicts

State 1 State 2

[A —c.,d] [A —c.,e]
[B—c.,e] [B—c.,d]
After merge:

[A —c.,d/e]

[B—c.,e/d]

Parsing © BGR, Fall2005

Handles (Informal)

Show the handle always remains on the top of the
stack in shift-reduce parsing

Assume y B w is a right sentential form with
v B on the stack.
1. Assume handle includes B.

% handle
S =, Ao, > 0 B1 B By,

Y w

where 3, or 3, can be €.

Parsing © BGR, Fall2005

37

38

Handles (Informal)

2. Assume handle included in w.
handle

S Ly oyBoy Aoy 5 o Boyflo,
rm m Y

3. Assume handle included in y.

handle
*
m rm

Y
But if p is handle, then A isn’t rightmost

nonterminal, B is. This is a contradiction!

Parsing © BGR, Fall2005 39

Handles, More Formally

* A — B,. B, valid for viable prefix a f3,
means IS > o A w—pa B; B, W
If B, = ¢ then snlrllould reduce by A — f,
If 3, != € then should shift

* Note can have two valid items indicating
different actions for same viable prefix

A — B,.B,and A — f,. Lookahead chooses
which action is taken

Parsing © BGR, Fall2005 40

Handles, More Formally

e Previous argument shows if A — f . is
valid item for viable prefix a § then a A
is viable prefix (i.e., we needn’t rescan the
parse after a reduction)

Parsing © BGR, Fall2005

Ambiguous Grammars

e Used to build compact parse trees

— Get rid of useless nonterminal to nonterminal

productions (e.g., S-->E-->T)
e Conflicts resolvable through desired

properties of operators (e.g., precedence)

e Generate smaller parsers

— Example of expression grammar

Parsing © BGR, Fall2005

41

42

Example

S—E I, S—.E I; : goto (I, ,E)
E—-E+E E —-.E+E S — E.
E —id E—.id E—E.+E
L, : goto (I, ,+) I;: goto (I, ,E) I,:goto(], ,id)
E—E+.E E—E+E. E—id.
E—.E+E E—E.+E
E—.id (reduce on + in Follow(E)

shift on +)

Choose reduce action making + left associative; can resolve
operator precedences the same way (e.g., + versus *)

Parsing © BGR, Fall2005

Grammar Classification

CFL {0" 1| n >= 1} union {0" 1>"| n >=1}

LR(k) ~LR(1) _

”

Parsing © BGR, Fall2005

43

44

