
Parsing ! BGR, Fall2005
1

ParsingParsing

• TD parsing - LL(1)

– First and Follow sets

– Parse table construction

• BU Parsing

– Handle, viable prefix, items, closures, goto’s

– LR(k): SLR(1), LR(1), LALR(1)

• Problems with SLR

• Aho, Sethi, Ullman, Compilers : Principles, Techniques and Tools

• Aho + Ullman, Theory of Parsing and Compiling, vol II.

Parsing ! BGR, Fall2005
2

TD ParsingTD Parsing

Elimination of left recursion.

E " E # | $ becomes E " $ A
A " # A | %

Example:

S " E S " E

E " E + T E " T A

E " T A " + T A | %

T " id T " id

Can also left factor the grammar removing
shared prefixes of right-hand-sides.

Parsing ! BGR, Fall2005
3

Parse TreeParse Tree

Parse tree converted from

left recursive to right recursive.

S

E

T A

id + T A

+ T A

id %

id

S

E + T

E + T

T

id

i

d

i

d

Parsing ! BGR, Fall2005
4

TD ParsingTD Parsing

• Problem: predicting which nonterminal

to expand next, from a leading string of

symbols

• Idea: generate parse tree top down so its

frontier is always a sentential form

– Use First and Follow sets to understand the
shape of sentential forms possibly generated
by the grammar

Parsing ! BGR, Fall2005
5

TD Stack Parser, EGTD Stack Parser, EG

Stack Input Production
$S id+id+id$
$E id+id+id$ S " E
$A T id+id+id$ E " T A
$A +id+id$ T " id
$A T id+id$ A " + T A
$A +id$ T " id
$A T id$ A " + T A
$A $ T " id
$ $ A " %

S " E

E " T A

A " + T A | %

T " id

See algm in ASU Fig 4.14, p 187

Parsing ! BGR, Fall2005
6

How to mechanize?How to mechanize?

• Define # to be string of nonterminals and
terminals

• First(#) is the set of terminals that begin
strings derivable from #.
If # % , then % is in First(#).

• Follow(A) is the set of terminals that can
appear directly to the right of A in a sentential
form
S # A a $ means a is in Follow(A).

If A can be rightmost symbol in a sentential form, that
is, X # & ' where ' %, then Follow(A)(
Follow(X).

*

*

* *

Parsing ! BGR, Fall2005
7

ExampleExample

• First(S) = First(E) = First(T) = {id}

• First(A) = { +, % }

• Follow(S) = Follow(E) = Follow(A) = {$}

• Follow(T) = {+, $}

S " E

E " T A

A " + T A | %

T " id

Parsing ! BGR, Fall2005
8

LL(k) GrammarsLL(k) Grammars

• Can choose next production to expand by

during TD phase, by looking k symbols ahead

into input

• Use First sets to choose production

• Use Follow sets to handle % cases

Parsing ! BGR, Fall2005
9

Example: LL(1)Example: LL(1)

Ambiguous or left recursive grammars

result in multiply defined entries in table

Nonterms\Inputs: id + $
S S " E
E E " T A

T T " id

A A " + T A A " %

First(S) = First(E) = First(T) = {id}

First(A) = { +, % }

Follow(S) = Follow(E) = Follow(A) = {$}

Follow(T) = {+, $}

S " E

E " T A

A " + T A | %

T " id

Parsing ! BGR, Fall2005
10

A View During TD ParsingA View During TD Parsing

S derives #),
a string of terminals;

X is nonterminal at top
of stack, X derives);
Initially
X==S, # == %,) is input

)

X

partially

constructed

parse tree

S

Parsing ! BGR, Fall2005
11

A View During BU ParsingA View During BU Parsing

#

$
w, a string of terminals

partially

constructed

parse tree

A

S # A w # $ w,

 so $ is the handle.

S*
rm rm

"

Parsing ! BGR, Fall2005
12

Intuitive ComparisonIntuitive Comparison

w x z

S

A

LR(k) can recognize A " # knowing w, x, and Firstk (z) .

LL(k) can recognize A " # knowing only w and Firstk(x).

Therefore, the set of languages recognizable by LR(k) contain

those recognizable by LL(k).

#

Parsing ! BGR, Fall2005
13

BU Parsing (Shift-Reduce)BU Parsing (Shift-Reduce)

Handle - part of
sentential form last
added in a rightmost
derivation.

BU parsing as

“handle hunting”

(1) S " *
(2) * " * + +

(3) * " T
(4) T " id

Rightmost derivation of

a+b+c, handles in red

S " E

 " * + +

 " * + id

" * + + + id

 " * + id + id

 " T + id + id

 " id + id + id

Parsing ! BGR, Fall2005
14

Shift-Reduce Parser, ExampleShift-Reduce Parser, Example
Actions: shift, reduce, accept, error
Stack Input Action

$ id1 + id2 + id3 $ shift

$ id1 + id2 + id3 $ reduce (4)
$ T + id2 + id3 $ reduce (3)

$ E + id2 + id3 $ shift

$ E + id2 + id3 $ shift

$ E + id2 + id3 $ reduce(4)
$ E + T + id3 $ reduce (2)

$ E + id3 $ shift

$ E + id3 $ shift

$ E + id3 $ reduce (4)

$ E + T $ reduce(2)
$ E $ reduce (1)

$ S $ accept

(1) S " *
(2) * " * + +
(3) * " T
(4) T " id

Parsing ! BGR, Fall2005
15

ProblemsProblems

Shift-reduce conflicts
S " if E then S | if E then S else S | other

On stack: if E then S
Input: else
Should shift trying for 2nd alternative or

reduce by first rule?

Reduce-reduce conflicts

if A " # and B " # both in grammar

When # on stack, how know which production
to choose?

Parsing ! BGR, Fall2005
16

Predictive ParsingPredictive Parsing

• Top Down: LL(k), Bottom Up: LR(k)

• Avoids backtracking while parsing by
using lookahead into input

• NO cases where more than 1 action

possible

Parsing ! BGR, Fall2005
17

LR(k)LR(k)

• Left to right scan parsing does a
rightmost derivation in reverse, using k
symbols of lookahead into input

• Three flavors
– Simple LR, SLR(1)

• Cheap

• Doesn’t always work

– LR
• Most powerful

• Most expensive

Parsing ! BGR, Fall2005
18

LR(k)LR(k)

– LALR

• Intermediate in cost and power

• All SLR(1) languages are also LR(1), but
parsers generated by corresponding

grammars for the same language will

differ in size.

• LR(k) catches syntax errors as early as

possible in a left-to-right scan of the input

• Covers most programming languages

Parsing ! BGR, Fall2005
19

LR ParsingLR Parsing

• DFA is embedded in parser which is a
PDA

• (topstack , input_symbol) accesses a
particular entry in the parser table
– Shift to state s

– Reduce by A " $

– Accept

– Error

• Goto: (state, topstack) " state

Parsing ! BGR, Fall2005
20

LR ParserLR Parser

state
symbol input

state\input

Action/ goto table

stack

Parsing ! BGR, Fall2005
21

LR ParsingLR Parsing

• Viable prefix - set of prefixes of right
sentential forms which can appear on a
stack of a shift/reduce parser
– Prefix of right sentential form that doesn’t

contain symbols beyond the handle

• Goto function is transition function of
DFA that recognizes viable prefixes of
the grammar

• Idea: continue to stack inputs until have
handle on top of stack and then reduce

Parsing ! BGR, Fall2005
22

Building an SLR ParserBuilding an SLR Parser

• Need states, goto’s, Follow sets

• Item - rule with embedded dot

S " . *

• Closure of item I

I , {B " .) , if A " # . B $ in I}

• States built from items and their closures

Parsing ! BGR, Fall2005
23

Example - StatesExample - States

S " E I0 : S " . E
E " E + T E " . E + T

E " + E " . +
+ " id + " . id

I1 : S " * . -2 : E " + .
* " * . + T

I3 : + " id . I4 : * " * + . T
T " . id

I5 : * " * + T.

Closure of
S " . E

Parsing ! BGR, Fall2005
24

Example - Example - GotoGoto’’s s + Follow sets+ Follow sets
goto (0, E) = 1 goto (0, id) = 3
goto (0, T) = 2 goto (1, +) = 4
goto (4, T) = 5 goto (4, id) = 3

goto ({set of items} , X) =

closure {[A " # X . $] |

[A " # . X $] in {set of items}}

where X is a terminal or nonterminal

Follow(S) = {$}

Follow(E) = Follow(T) = { +, $}

Parsing ! BGR, Fall2005
25

Example - Parser TableExample - Parser Table

si, shift to state I; r(j) reduce by rule j

States\ inputs: goto’s

id + $ E T
0 s3 1 2
1 s4 accept
2 r(3) r(3)
3 r(4) r(4)
4 s3 5
5 r(2) r(2)

Parsing ! BGR, Fall2005
26

ExampleExample

Stack input action
0 id1 + id2 $ s3
0 id1 3 + id2 $ r(4), goto on T
0 T 2 + id2 $ r(3), goto on E
0 E 1 + id2 $ s4
0 E 1 + 4 id2 $ s3

0 E 1 + 4 id2 3 $ r(4), goto on T
0 E 1 + 4 T 5 $ r(2), goto on E
0 E 1 $ accept

Parsing ! BGR, Fall2005
27

SLR(1) Parser RulesSLR(1) Parser Rules

• If A " # . a $ is in state Ij and goto(Ij , a)

is Ir then (Ij,, a) transitions by shift r (sr)

• If A " # . is in state Ij , set action [j,a] to

reduce A " # for all a in Follow(A)

– Note: A != S

• If S " * . in Ij , action (j,$) is accept

• Any table entry not defined is error.

Parsing ! BGR, Fall2005
28

ProblemsProblems
• Shift-reduce conflicts happen when Ab can occur

in some sentential form and b . Follow(A).
S " L = R I0 : S " . L = R

S " R S " . R
L " * R R " . L
L " id L " . * R

R " L L ". !d

 I1 : S " L . = R (1)

 R " L . (2)

In I1 shift when see = in input(item 1); reduce on = because =
in Follow(R) (item 2). Note: S " L = R " * R = R …, but this

is not a rightmost derivation!

Parsing ! BGR, Fall2005
29

Problems, cont.Problems, cont.

Can see that rightmost derivation is:

S " L = R " L = L "L = id " * R = id "

*L = id " * id = id

Therefore, should reduce *R to L when see =,
not shift in order to get *R onto the stack.

Problem is that we can’t distinguish those Follow

elements corresponding to a rightmost derivation

in a specific context.

Parsing ! BGR, Fall2005
30

Nomenclature in ASUNomenclature in ASU
• An item [A " $.)] is valid for viable prefix
$ if S # A w # $) w.

– Means can continue towards accumulating an
handle on the stack by shifting

– Previously, shift would have changed viable
prefix *R to nonviable prefix *R=

• If I is set of items valid for viable prefix $ then

goto(I, X) is set of items valid for viable prefix

$X where X is terminal or nonterminal

*
rm rm

Parsing ! BGR, Fall2005
31

LR ParsingLR Parsing

• LR items include a lookahead symbol,

(into the input) which helps in conflict

resolution

• Need new closure rule:

– For [A " # . B) , a] item add [B " . ' , b]
for every b in First() a).

Parsing ! BGR, Fall2005
32

ExampleExample

I 0 : S " . E, $ - initial item

E " . * + +, $ - closure initial item

E " . T, $

E " . E + T, + - closure 1st red item

E " . +, +
+ " .id , $ - closure 2nd red item

T " .id, + - closure 2nd blue item

Will write these in more compact form by
combining lookaheads.

For [A " # . B) , a] item add [B " . ' , b]

for every b in First() a).

Parsing ! BGR, Fall2005
33

Example, LR(1) ParserExample, LR(1) Parser

I0:S " .E, $ I1: [goto (I0 , E)]

E " .E + T, $/+ S " E ., $

E " . T, $/+ S " E . + T, $/+

T " .id , +/$ I2:[goto (I0 , T)]

I4:[goto(I1 , +)] E " T., $/+

 E " * + . +, $/+ I3: [goto (I0 , id)]

 T " . id, $/+ T " id . , $/+

I5: [goto (I4, T)]

E " * + + . , $/+

Parsing ! BGR, Fall2005
34

LR(1) ParserLR(1) Parser

• Reduce based on lookaheads in item

which are a subset of Follow set

• Rules similar to SLR

– Shift in Ik, [A " # . a $, b], goto (Ik, a) = Ij

– Reduce [A " # . , b] reduce # to A on b

– Accept [S " E., $], accept on $

Parsing ! BGR, Fall2005
35

LALR ParsingLALR Parsing

• Idea: merge all states with common first
components in their LR(1) items

• Implementation problem: need to reduce
number of states to get smaller parser table

• Reduced size parser will perform

– Same as LR on correct inputs (will be parsed by

LALR)

– On incorrect inputs, LR may find error faster;

LALR will never do an incorrect shift but may do

some wrong reductions

Parsing ! BGR, Fall2005
36

LALR ParsingLALR Parsing

• Conceptually, build LALR(1) parser
from LR(1) parser
– Merge all states with same first components

– Union all goto’s of these merged states
(goto’s are independent of second
components)

• Correctness of conceptual derivation
– Can never produce a shift-reduce conflict or

else [A " # . , a] and [B "$. a) , b] existed
in some LR(1) state

Parsing ! BGR, Fall2005
37

LALR, cont.LALR, cont.

– But can create reduce-reduce conflicts

State 1 State 2

[A " c. , d] [A " c. , e]

[B " c . , e] [B " c . , d]

After merge:

[A " c. , d/e]

[B " c . , e/d]

Parsing ! BGR, Fall2005
38

Handles (Informal)Handles (Informal)
Show the handle always remains on the top of the

stack in shift-reduce parsing

Assume) B w is a right sentential form with

) B on the stack.

1. Assume handle includes B.

S #1 A #2 #1 $1 / $2 #2

where $1 or $2 can be %.

*

rm rm

) w

handle

Parsing ! BGR, Fall2005
39

Handles (Informal)Handles (Informal)

2. Assume handle included in w.

S #1 / #2 A #3 #1 B #2 $ #3

3. Assume handle included in).

S #1 & #2 #1 $ B w

But if $ is handle, then A isn’t rightmost
nonterminal, B is. This is a contradiction!

*

rm rm

handle

)

*

rm rm

)

handle

w

Parsing ! BGR, Fall2005
40

Handles, More FormallyHandles, More Formally

• A " $1 . $2 valid for viable prefix # $1

means 0 S # A w # $1 $2 w
If $2 = % then should reduce by A " $1

If $2 != % then should shift

• Note can have two valid items indicating

different actions for same viable prefix

A " $1 . $2 and A " $1 . Lookahead chooses

which action is taken

*

rm rm

Parsing ! BGR, Fall2005
41

Handles, More FormallyHandles, More Formally

• Previous argument shows if A " $. is
valid item for viable prefix # $ then # A
is viable prefix (i.e., we needn’t rescan the

parse after a reduction)

Parsing ! BGR, Fall2005
42

Ambiguous GrammarsAmbiguous Grammars

• Used to build compact parse trees

– Get rid of useless nonterminal to nonterminal

productions (e.g., S-->E-->T)

• Conflicts resolvable through desired

properties of operators (e.g., precedence)

• Generate smaller parsers

– Example of expression grammar

Parsing ! BGR, Fall2005
43

ExampleExample

S " E I0 : S " . * -1 : goto (I0 ,E)

E " * + * * " . * + * S " E.

E " id E " . id E " E . + E

I2 : goto (-1 ,+) I3 : goto (-2 ,E) I4 :goto(-0 ,id)

E " E + . E E " E + E . E " id .

E " . * + * * " E . + E
E " . id (reduce on + in Follow(E)

shift on +)

Choose reduce action making + left associative; can resolve
operator precedences the same way (e.g., + versus *)

Parsing ! BGR, Fall2005
44

Grammar ClassificationGrammar Classification

CFL {0n 1n | n >= 1} union {0n 12n | n >= 1}

LR(k) ~ LR(1)

LL(k)

LALR(k)

SLR(k)

S " L = R | R
L " *R | a

R " L

