
Prolog-II, BGR, Fall05
1

Prolog II

• Unification
– Informally

– Formal description

– Problems in compilation

• Factorial
– Example of generate and test

– Cut (!)

Prolog-II, BGR, Fall05
2

Trees

• Can use Prolog terms to represent trees

2 * 3 can be times(2,3)

– Then can design recursive Prolog clauses to

“walk” the tree, gathering terms.

– Example, generating code from an abstract

syntax tree for an arithmetic expression

times

2 3

Prolog-II, BGR, Fall05
3

Example
treewalk(W,[W]) :- integer(W).

treewalk(times(X,Y),Walk) :- treewalk(X,W1),
treewalk(Y,W2),append(W1,[*],A1),

 append(A1,W2,Walk).

treewalk(plus(X,Y), Walk):- treewalk(X,W1),
treewalk(Y,W2), append(W1,[+],A1),
append(A1,W2,Walk).

append([],A,A).

append([A|B],C,[A|D]) :- append(B,C,D).

times

X Y

plus

X Y

Prolog-II, BGR, Fall05
4

Generating Code from AST

times

plus

2 3

4

A Prolog data structure:

plus(times(2,3),4))
representation for

2*3+4

This Prolog query produces code

from the tree represented as a

Prolog data structure (a term):

?-treewalk(plus(times(2,3),4),X)).

X = [2, *, 3, + , 4]

Note code generated here is a

correct inorder traversal but

will not generate correct expressions

from the input because it ignores

operator precedence.

Prolog-II, BGR, Fall05
5

How treewalk.pl works?

• Second argument is always the code which
corresponds to the AST which is the first
argument.

• Base case finds leaf nodes which are integer
constants with Prolog built-in

treewalk(W,[W]) :- integer(W).

• Tree exploration generates an inorder traversal
of the nodes

• Plus and times clauses work the same

Prolog-II, BGR, Fall05
6

How treewalk.pl works?

• First, explore left subtree and get its code bound
to W1 (left operand)
treewalk(times(X,Y),Walk) :-
treewalk(X,W1), …

• Second, explore right subtree and get its code
bound to W2 (right operand)
… treewalk(Y,W2),…

• Third, insert proper operator for this node …
append(W1,[*], A1), …

• Fourth, append rest of expression

… append(A1,W2,Walk).

Prolog-II, BGR, Fall05
7

Unification Examples

unify(X,Y):- X = Y.
| ?- unify(a,X).
X = a ;

no

| ?- unify(a,X),unify(X,Y).

X = Y = a ;

no

| ?- unify(a,X),unify(b,Y),unify(X,Y).

no

| ?- unify(X,Y).

X = Y = _24 ;

no

Prolog-II, BGR, Fall05
8

Unification Examples

unify(X,Y):- X = Y.

| ?- unify(X,Y), unify(X,a).

X = Y = a

| ?- unify(X,dummy(a)).

X = dummy(a)

| ?- unify(X,dummy(a)),unify(X,Y).

X = Y = dummy(a)

| ?- unify(X,dummy(Y)).

X = dummy(Y),

Y = _45 ;

no

Prolog-II, BGR, Fall05
9

Unification, Informally

• Intuitively, unification between 2 Prolog terms
tries to associate values with the variables so that
the resulting trees, representing the terms, are
isomorphic (including matching labels)

• To use a Prolog rule, we must unify the head of
the rule with the subgoal to be proved,
“matching” term by term

Prolog-II, BGR, Fall05
10

Unification, Informally
• Given a subgoal <functor>(<term>{, <term>}) how to unify it with

a clause head?

– Rule and subgoal have same name

– Any uninstantiated variable matches any term

• If term is also an uninstantiated variable, this means if either
takes on a value, they both do

– Integer and symbolic constants match themselves, only

– A structured term matches another term iff

• Has same relation name

• Has same number of components (that is, terms within
parentheses) and corresponding components match

– Lists unify by matching element by element

Prolog-II, BGR, Fall05
11

Unification
• Unification looks for the most general (or least

restrictive) value to assign

• A substitution (!) is a finite map from variables to

terms in the language

append([A|B],Y,[A|Z]):-

?- append([a,b],[c],W)

!: A " a, B " [b], Y " [c], W " [a|Z]

• A term U is an instance of another term T, if there is a

substitution ! such that U = T !.

Rule head

query

Prolog-II, BGR, Fall05
12

Unification

• Two terms S,T unify if they have a

common instance U; that is,

S !1 = T !2 = U

– Note: if variable X is contained in both S

and T, then !1 and !2 both must have the

same substitution for X.

– If two terms unify, they can be made

identical under some substitution

Prolog-II, BGR, Fall05
13

Unification

There may be more than one substitution to

unify two terms

times(Z,times(Y,7)) and times(4,W)

!1 : Z = 4, Y = plus(3,5),

 W = times(plus(3,5),7)

!2: Z = 4, W = times(Y,7)

Which substitution is simpler or less restrictive on

the values of the variables? !2

Prolog-II, BGR, Fall05
14

Most General Unifier

• We say # is the most general unifier (mgu)

of two terms, T and W, iff for all other
unifiers ! of T and W, T! is an instance of
T # ; therefore, ! can be obtained by a
substitution $ applied to #, ! = # • $

?- member(A,B) returns A=_123, B=[A| _]
when it could return A= _123, B=[A,b] or
A=_123, B= [A, c, d] etc. Note, the 2nd and 3rd
B values are obtainable from the mgu by
additional substitutions

Prolog-II, BGR, Fall05
15

Occurs Check

• There are problems with the unification

done in some Prolog compilers, which

result in an unbounded unification being

attempted. Called an occurs check

– [a,b |Z] = [X | Z] X " a, Z " [b, Z]

a

b X ZZ

Prolog-II, BGR, Fall05
16

Occurs Check

• If try to evaluate value of Z, compiler will return
Z=[b,b,b,… a value that results in an infinite loop in the
Prolog interpreter

• Unification should check that it doesn’t unify a variable
with a term containing that same variable

• Occurs check was left out of Prolog by Colmerauer
because of efficiency (to avoid the run-time cost

– Current Prolog compilers have it

– Example of safety yielding to efficiency (O(n) instead of O(n2) on
list concatenation)

Prolog-II, BGR, Fall05
17

Occurs Check

Useful recursive type to build, a not-fully-

evaluated list

?-append([],E,[a,b|E])

need to unify with append([],A,A)
resulting in A " E and A " [a, b | E]

a

b E

desired result

a

b E

A,E
a

b

E

final type graphduring unification

process

Can’t be built without occurs check

occursCheck.pl

Prolog-II, BGR, Fall05
18

Generate and Test Paradigm

• Use of cut (!) to change evaluation order of

Prolog clauses.

• Already saw cut in definition of \+

• A typical programming style in Prolog is

generate and test

– Can write clauses to generate values and test if

they satisfy the desired condition

– Factorial example

– N Queens example

fact.pl

queens.pl

Prolog-II, BGR, Fall05
19

Factorial

• Function to calculate X factorial if X is

bound to an integer value
factorial (0,1).

factorial(X,Y) :- W is X-1,
factorial(W,Z),

Y is Z*X.

If X is not bound to an integer value, then

first subgoal (is clause) is undefined.

• A top-down calculation: n! is (n-1)!*n

Prolog-II, BGR, Fall05
20

Factorial

• Add a guard to 2nd rule:
factorial (0,1).

factorial(X,Y) :- integer(X), W is X-1,
factorial(W,Z), Y is Z * X.

This builds f(n) from f(n-1), stepping down
to f(0). If we query this new 2nd clause
with factorial(Y,6), it will not
match, but it will not abort, either.

Prolog-II, BGR, Fall05
21

Factorial

• How about a bottom-up definition?
f(0,1).

f(X,Y):-f(W,Z), X is W+1, Y is Z*(W+1).

Here we calculate f(3,Y) by building it up from
f(0,1), f(1,1), f(2,2), f(3,6).

• This new definition works for f(3,Y) and f(X,6)
but what about f(X,5)? It will infinitely loop on
this query. We need a way to control the
backtracking mechanism, so it stops computation
once a factorial value greater than 5 is returned.

Prolog-II, BGR, Fall05
22

Cut
• Cut (!)

– Commits system to all choices made since the
parent goal was invoked

– If the parent predicate is re-entered by a
backtracking computation, it cannot be re-
satisfied. Instead a previous predicate must be re-
satisfied.

eat_lunch(joe,X):-available(X),cheap(X),!,
sick(joe, X).

 use eat_lunch predicate in another computation:

…eat_lunch(joe,Y),…

If backtrack into eat_lunch, can’t retry available(X) or cheap(X),

and can’t try another rule for eat_lunch(joe,Y).

Prolog-II, BGR, Fall05
23

Factorial, finally
fact(0,1).

fact(X,Y):-fact(W,Z),X is W+1,Y is Z*(W+1).

f2(X,Y):-integer(Y),fact(W,Z),Z>=Y,!,Z=Y,
W=X.

f2(X,Y):-integer(X),var(Y),fact(X,Y),!.

f2(X,Y):-fact(X,Y).

Look at cases:

f2(int,var) - uses 2nd f2 rule for generation

f2(var or int, int) - uses 1st f2 rule to check (int,int) or
generate (var, int)

f2(var,var) - uses 3rd f2 rule to generate factorial pairs

