
SML2 ! BGR, Fall05 1

SML-2SML-2

• User defined types

• Functions on user defined types

• Higher order functions

– Reduce

– Fold

SML2 ! BGR, Fall05 2

Strictness versus EagernessStrictness versus Eagerness

• SML is an eager PL. All arguments to a function are
evaluated on entry.

• A function is strict in an argument if it always uses
that argument; then it’s safe to evaluate that
argument on entry.

• Some PLs use lazy evaluation, delaying argument
evaluation until it’s necessary for the value to be
used.

• Compile-time analysis for strictness allows
optimization

SML2 ! BGR, Fall05 3

ReduceReduce

• Powerful higher level function that works on lists in a process
termed list reduction

• If f is to be defined on the elements of the list, u the result for
the empty list and $ a binary operation then:

f nil = u

f [x1, x2, x3,…,xk] = x1 $ x2 $ x3 $ … $ xk

Associativity of $ counts here as to how this is evaluated.

Need identity element for $ operation, such as :

plus, + (0), times, * (1), append, @ (nil)

SML2 ! BGR, Fall05 4

Typing ReduceTyping Reduce

>fun reduce f zero [] = zero | (* 1 *)
 reduce f zero (x::tl) = f x (reduce f zero tl); (* 2 *)
val reduce = fn :(‘a ! ‘b ! ‘b) ! ‘b ! ‘a list ! ‘b

• Let’s see how to type reduce.
– Most general type is fn :(‘a ! ‘b ! ‘c) ! ‘d ! ‘e list ! ‘f

– From (2) can see x is 1st argument of f, so ‘e = ‘a;

– From (2) also, result of reduce is 2nd argument of f, so ‘f = ‘b
yielding simpler type for reduce:

 fn :(‘a ! ‘b ! ‘c) ! ‘d ! ‘a list ! ‘b

– From (1), zero is return type of reduce so ‘d = ‘b and f is return type
of reduce function from (2) so ‘c = ‘b, yielding final type for reduce:

 fn :(‘a ! ‘b ! ‘b) ! ‘b ! ‘a list ! ‘b

SML2 ! BGR, Fall05 5

ReduceReduce

Recall, add x y:int = x+y.

>reduce add 0 [1,2,3,~1,~2,~3];

val it = 0 : int

>fun times x y: int = x * y;

val times = fn: int ! int ! int

>reduce times 1 [3,1,2,~1,~2,~3];

val it : ~36: int

 fun reduce f zero [] = zero |

 reduce f zero (x::tl) = f x (reduce f zero tl);

SML2 ! BGR, Fall05 6

ReduceReduce

• Intuition: think of the list as constructed from elements at the
top level by cons operations (that is, :: constructions)

cons 7 (cons 3 (cons 13 nil)) = [7,3,13]

Then the effect of reduce add 0 [7,3,13];

is to insert add for the “cons-es” in its list operand and 0 for
nil in that list, that is:

add 7 (add 3 (add 13 0))

Note: this is doing addition using right associativity, so you
need to be careful about the operator you use with reduce,
as it has to be right associative.

SML2 ! BGR, Fall05 7

UsingUsing reduce reduce to build to build flattenflatten

• Can build a list flatten using list append function

>fun app nil y = y | app (x::xs) y = x::(app xs y);

val app = fn: ‘a list ! ‘a list ! ‘a list

>fun flatten xs = reduce app nil xs;

val flatten = fn: ‘a list list ! ‘a list

>flatten ([[1,2], [3,4]]);

val it = [1,2,3,4]: int list

>flatten ([[[1]], [[2]]]);

val it = [[1],[2]]: int list list

What’s wrong here? Flatten is only working on the top level elements of

the list. How would you build a list flatten that flattens every sublist?

SML2 ! BGR, Fall05 8

flattenflatten Example Example

Think of replacing all top level “cons-es” by the function

argument, app

flatten ([[1,2], [3,4]]);
 reduce app nil (cons [1,2] (cons [3,4] []))

flatten [[[1]],[[2]]];

reduce app nil (cons (cons (cons 1 nil), nil),

 (cons (cons 2, nil), nil))

app app

app

app

[1]

[2]

Ans: [1,2,3,4]

Ans: [[1],[2]]

app [[1]]

[[2]]

[[1]] [[2]] [[1],[2]]

SML2 ! BGR, Fall05 9

Building Building map map from from reducereduce

>fun cons x y = x::y;

val it = fn: ‘a ! ‘a list ! ‘a list;

>fun comp f g x = f (g (x));

val comp = fn: (‘a ! ‘b) ! (‘c ! ‘a) ! ‘c ! ‘b

>fun mymap f llist = reduce (comp cons f) [] llist;

val it = fn: (‘a ! ‘b) ! ‘a list ! ‘b list

> fun incr = add 1;

val it = fn: int ! int

> mymap incr [12,2];

val it = [13,3]: int list

SML2 ! BGR, Fall05 10

mymapmymap ExampleExample

mymap incr [12,2] = mymap incr (cons 12 (cons 2 nil))

=((comp cons incr) 12 ((comp cons incr) 2 nil))

=((cons (incr 12)) (cons (incr 2) nil))

(cons 3 nil))

= (cons 13 (cons 3 nil))

= [13, 3].

SML2 ! BGR, Fall05 11

Fold1Fold1

A left associative reduction operation
>fun fold1 f u nil = u | fold1 f u (x::xs) =

 fold1 f (f u x) xs;

val fold1 = fn: (‘a ! ‘b ! ‘a) ! ‘a ! ‘b list ! ‘a

fold1 uses its 2nd parameter as an accumulator for the partially
calculated value, initializing it to the identity for the f operation

>fold1 append nil [[1], [2], [3]]; (*another list flatten*)

val it = [1,2,3] :int list

>fold1 add 1 [1,2,3];

val it = 7 : int

SML2 ! BGR, Fall05 12

fold1 fold1 versusversus reduce reduce
=fold1 add 0 [7,3,13] (*better storage behavior*)

=fold1 add 7 [3,13]

=fold1 add 10 [13]

=fold1 add 23 nil

=23

=reduce add 0 [7,3,13]

=add 7 (reduce add 0 [3,13])

=add 7 (add 3 (reduce add 0 [13])

=add 7 (add 3 (add 13 0)) = add 7 (add 3 (13))

=add 7 16 = 23

 fun reduce f zero [] = zero |

 reduce f zero (x::tl) = f x (reduce f zero tl);

 fun fold1 f u nil = u |
 fold1 f u (x::xs) = fold1 f (f u x) xs;

SML2 ! BGR, Fall05 13

fold1fold1

>fun and x y:bool = if x then y else false;

val and = fn: bool ! bool ! bool

>fun fold1 and true [true];

val it = true: bool

(*fold1 and true [true] = fold1 and (and true true) nil

 = fold1 and true nil

 =true*)

 fun fold1 f u nil = u |
 fold1 f u (x::xs) = fold1 f (f u x) xs;

SML2 ! BGR, Fall05 14

User defined Types in SMLUser defined Types in SML

datatype <name> = <constructor1> [of <type1>] |

<constructor2> [of <type2>] |…|

 <constructorK> [of <typeK>];

Can define new sorts of data types this way and
operations on them become discriminated by use of
the constructor name.

SML2 ! BGR, Fall05 15

ExamplesExamples

> datatype Direction = N | S | E | W ;

datatype Direction %enumeration

con E: Direction

con N: Direction

con S: Direction

con W: Direction

>fun turn90 (N) = E | turn90 (E) = S |

turn90 (S) = W | turn90(W) = N;

val turn90 = fn :Direction ! Direction

SML2 ! BGR, Fall05 16

ExamplesExamples

> datatype Length = Inches of real | Feet of real;

datatype Length

con Feet: real ! Length

con Inches: real ! Length

> fun circlearea(Inches r) = 3.14*r*r/144.0 |
circlearea(Feet f) = 3.14*f*f;

val circlearea = fn: Length ! real

> circlearea (Inches 2.0); can’t just write (2.0) here!
val it = 0.0872…2 :real

SML2 ! BGR, Fall05 17

Parameterized polymorphicParameterized polymorphic

typestypes

>datatype ‘a seq = nullseq | seq of ‘a * (‘a seq);

dataype ‘a seq

con nullseq ! ‘a seq

con seq: ‘a * ‘a seq ! ‘a seq

>val y = seq (2, nullseq);
val y = seq (2, nullseq) : int seq

>val z = seq (4, y);
val z = seq (4,y) : int seq

SML2 ! BGR, Fall05 18

Examples- Recursive TypesExamples- Recursive Types

>datatype ‘a bintree = leaf | node of

 ‘a * (‘a bintree) * (‘a bintree);
datatype ‘a bintree

con leaf : ‘a bintree

con node: ‘a * (‘a bintree) * (‘a bintree)!`a bintree

This tree stores data of type ‘a only at internal nodes.

SML2 ! BGR, Fall05 19

ExamplesExamples

>datatype ‘a tree = empty | leaf of ‘a | node of

 ‘a tree * ‘a tree;
datatype ‘a tree
con empty: ‘a tree
con leaf: ‘a ! ‘a tree
con node : ‘a tree * ‘a tree ! ‘a tree

Here the type signatures for leaf and node as
constructors allow us to distinguish their uses from
the previous datatype. This tree stores data only at
its leaves.

SML2 ! BGR, Fall05 20

ExamplesExamples

>val x = node (1, node(2, leaf,leaf),leaf);

val x = node (1, node(2, leaf,leaf),leaf) : int bintree

>val y = empty;

val y = empty: ‘a tree

>val z = leaf 1;

val z = leaf 1: int tree

>val w = node (z,y);

val w = node (leaf 1, empty): int tree

>datatype ‘a tree = empty |

 leaf of ‘a |

 node of ‘a tree * ‘a tree

>datatype ‘a bintree = leaf |
 node of ‘a * (‘a bintree) * (‘a bintree);

SML2 ! BGR, Fall05 21

ExamplesExamples

>val q = node (w, leaf);

ERROR: says node/2 expects int tree * int tree and

is given int tree * (‘z ! ‘z tree) {type of leaf constructor in bintree}

>val r = node(leaf 1, x);
ERROR: node /2 expects expects int tree * int tree and is given int tree * int

bintree.

>datatype ‘a tree = empty |

 leaf of ‘a |

 node of ‘a tree * ‘a tree

>datatype ‘a bintree = leaf |
 node of ‘a * (‘a bintree) * (‘a bintree);

SML2 ! BGR, Fall05 22

Functions on Functions on DatatypesDatatypes

>fun countleaves (empty) = 0 |

countleaves (leaf (a)) = 1 |

countleaves (node (tree1, tree2)) =

 countleaves (tree1) + countleaves (tree2);

val countleaves = fn: ‘a tree ! int

>val tree = node (node (leaf(3),leaf(5)),

node((node(leaf(4), leaf(2)), leaf(10)));

val tree = ….: int tree

>countleaves (tree);

val it = 5: int

3 5

4 2

10

SML2 ! BGR, Fall05 23

Function ClosuresFunction Closures

• Closure - a function and that part of its

environment necessary for its evaluation

– Needed for functions to be arguments

let val x =10

 fun f y = x + y {" y.x+y, x # 10 } closure of f

in f 3 end;

– Can serve as a way of doing a kind of lazy
evaluation of an unbounded argument

SML2 ! BGR, Fall05 24

SML SequencesSML Sequences

A way to calculate effectively with a priori unbounded streams
of data, by encapsulating a function.

datatype ‘a seq =Nil | Cons of ‘a * (unit ! ‘a seq)

fun head (Cons (x,_)) = x;

fun tail (Cons (_, xf)) = xf();

Cons(x, fn() => <expr>) ; SML evaluates x but not the <expr>;
this is prevented by the function abstraction. Cons here is a
type constructor, NOT the same as the list constructor ::

Lisp calls these streams.

SML2 ! BGR, Fall05 25

SML SequencesSML Sequences

>fun from k = Cons(k, fn()=>from (k+1));

val from = fn:int ! int seq

> from 1;

val it = Cons(1,fn):int seq

> tail it;

val it = Cons(2,fn):int seq

>tail it;

val it = Cons(3,fn):int seq

Sequence is evaluated lazily; function abstraction
hides an unbounded number of elements.

SML2 ! BGR, Fall05 26

ExampleExample

>fun takeq (0, xq) = [] | fun takeq(n, Nil) = [] |

 fun takeq(n, Cons(x,xf)) = x :: takeq(n-1, xf());

val takeq=fn: int * ‘a seq ! ‘a list

>takeq(7, from 30);

[30,31,32,33,34,35,36] :int list

>takeq(3, from 5);

[5,6,7]: int list

 How does this work??

SML2 ! BGR, Fall05 27

ExampleExample

takeq(2, from 30) =

takeq(2, Cons (30, fn() => from (30+1))); =

30 :: (takeq(1, from (31))); =

30 :: (takeq(1,Cons(31, fn=>from(31+1)))); =

30 :: (31 :: (takeq(0,from (32))));

30 :: (31 :: (takeq(0,Cons(32,fn()=>from (32+1)))); =

30 :: (31 :: []) = [30,31]

Notice that 32 is calculated but not used, so this calculation is

not truly lazy.

 fun takeq (0, xq) = [] | fun takeq(n, Nil) = [] |

 fun takeq(n, Cons(x,xf)) = x :: takeq(n-1, xf());

