
1SML ! BGR, Fall05

SML - OutlineSML - Outline
• Primitive datatypes

• Variables

• Let expressions

• Structured types

• Functions and control expresssions

• Parameter - argument association through pattern
matching

– How to use to define functions on structured types?

• Higher order functions and defining operators

• Exceptions

• Mutually recursive functions

2SML ! BGR, Fall05

SMLSML

• Standard ML of NJ, Dave MacQueen’s group at
Bell Laboratories and Andrew Appel’s group at
Princeton

• Strongly typed, statically checked PL

• Garbage collected implementation

• Strict PL, arguments are evaluated before
function call

• Higher order, nested functions

3SML ! BGR, Fall05

SMLSML

• Variable bindings are static

• Has side effects from imperative constructs

• Has formally defined semantics that is

complete

– Each legal program has a deterministic result

– All illegal programs are recognizable as such by

a compiler

4SML ! BGR, Fall05

SMLSML

• Subset we will use is purely functional

– Referential transparency: function
application context does NOT affect
returned value

– Functions are first-class citizens

• SML interpreter uses typical Lisp read-eval-
print loop which yields values and their
types

5SML ! BGR, Fall05

SML by ExampleSML by Example

> 2 + 2;

val it = 4 : int

>fun divide(x,y) = x / y;

val divide = fn : real *real ! real

Name of

expression

Type of valueComputed value

6SML ! BGR, Fall05

Primitive Data TypesPrimitive Data Types
TYPE VALUES OPERATIONS

bool true, false not, andalso, oralso

if--then--else

integer 1, 25, ~3 + - * div, mod, real
<>,=,<=,>=

real 3.4, 3E2 + - * /, floor, <>, =, <=, >=

string “barbara” size, ^ (concatenate)

unit () type used for things that
have no type (e.g., procs

w/o return values)

Note: + * - are all overloaded operators, but there is NO
COERCION in ML. 1+ 3.5 is ILLEGAL!

Also: x+y must be written x:int + y or x:real + y to
distinguish the selected + operator.

type converters

7SML ! BGR, Fall05

Bound VariablesBound Variables

• Using val

– Val is not assignment

– Val binds a new instance of a name to a value
>val x = 17; binds value 17 to x.

>val y = x; binds value 17 to y.

>val x = true; creates a new x, hiding the previous x,

 and binds true to the new x.

>val z = x; binds true to z.

8SML ! BGR, Fall05

Bound VariablesBound Variables

• Using let

let <decls> in <expr> end;

Sets up some declarations whose scope is the
expression <expr>; body of let expression is
evaluated with respect to the environment in
which it is written, augmented by the
declarations

Value associated with the let, is value of the
<expr>

9SML ! BGR, Fall05

ExamplesExamples
EG1: > let val x = 2 in

let val y = x + 1 in nested lets

y* y

end;

 end;

val it = 9:int
EG2: > let val x = 5

val y = x + 3
val x = 3 in here x is 3, y is 8
 2 * x * y end;

 val it = 48 : int

10SML ! BGR, Fall05

ExamplesExamples

EG3: let val x = 2 in x is 2

let val y = x + 3 in y is 5

let val x = 4 in x is 4

 2 * x * y 2 * 4 * 5

end

end

 end;

 val it = 40 : int

11SML ! BGR, Fall05

Structured TypesStructured Types
• Tuples - finite sequence of (possibly) differently

typed elements

(3, true, 5.2) : int * bool * real

– Equality check is done component-wise

(true, 7) = (“abc”, ());

type error: bool * int can’t match string * unit

• Lists - sequence of same-type elements

– Equality check is done component-wise

– Cons is shown as ::

:: is of type ‘a * ‘a-list " ‘a -list

e::r means e is type # and r is type #-list

12SML ! BGR, Fall05

Structured TypesStructured Types

– @ denotes list append operator

> [2] @ [3, 4] ;

 val it = [2, 3,4] : int list

> 2 :: [3, 4, 5];

 val it = [2, 3, 4, 5] : int list

– nil - a polymorphic object that can inhabit a
number of structurally related types; used to
show end of list

• nil is of type ‘a-list

• nil also written []
SML type variable

13SML ! BGR, Fall05

Control Structures asControl Structures as

ExpressionsExpressions
• conditionals if..then..else, case

if x = 1 then y else 2*y;

case <expr> of [] => … | [2::s]=> … | _ => …

• lets - create static scopes

• function application

• exceptions - provide different type of function

return

exception negArg;

fun areacircle r = if r<0 then raise negArg else (3.1416*r*r);

14SML ! BGR, Fall05

FunctionsFunctions

• Function application is the main control
structure

– (e1 e2) is function application

• e1 evaluates to a function, usually curried

• e2 is function argument

– e1: $! " , e2: $

– call by value parameter passing (because SML
is a strict PL)

15SML ! BGR, Fall05

ExamplesExamples

fun <func_name> <parameter> = <func_body>

>fun areacircle r = 3.14159 * r * r;

val areacircle= fn : real ! real

>areacircle 1.0;

val it = 3.14159 : real

>fun areasquare r = r * r; %no good because SML
can’t type overloaded * operator

>fun areasquare r = r:int * r;

val areasquare = fn: int ! int

16SML ! BGR, Fall05

ExamplesExamples

>fun areatriangle(b,h) = b * h / 2 %no good because
use real division with integer argument

>fun areatriangle(b,h) = b * h / 2.0

val areatriangle = fn: real * real ! real

>fun curriedareatri b h = b * h / 2.0

val curriedareatri = fn : real ! (real ! real)

>curriedareatri (4.0);

val it = fn: real ! real %will be area fcn for
triangles with base 4.0

17SML ! BGR, Fall05

Nested FunctionsNested Functions

fun reverse (y) =

let fun rev nil z = z | rev (hd::tl) z = rev tl hd::z

in rev y nil

end;

What is the type of reverse?

(you should be able to show type is: ‘a list ! ‘a list)

18SML ! BGR, Fall05

Anonymous FunctionsAnonymous Functions

• Function values do not necessarily have names

associated with them!

> val f = (fn n => n+1); this form is more like

val f = fn: int ! int a lambda expression

> fun g(n) = n + 1;

val g = fn: int ! int

>val areacircle = fn r =>3.14159 * r * r

val areacircle = fn: real! real

19SML ! BGR, Fall05

PatternsPatterns

Pattern - an expression built from variables
and constants by value constructors;

> val x = (false, 17);

val x = (false, 17) : bool * int

> val s = [“lo”, “high”, “mid”]

val s = [“lo”, “high”, “mid”] : string list

> val hd ::tl = s;

val hd = “lo” :string

val tl = [“high”, “mid”] : string list

20SML ! BGR, Fall05

PatternsPatterns

• Patterns can have nested elements

> val x = ((“foo”, “bar”), true);

val x = ((“foo” , “bar”), true) : (string * string) * bool

• SML compiler may complain about your patterns

• Redundant - means pattern will never be used

because all previous patterns match all alternatives

(in function definition)

• Not exhaustive - means there is an uncovered kind of

argument that matches none of your patterns.

21SML ! BGR, Fall05

List PatternsList Patterns

pattern matches binding does not match

nil nil none 2::nil

x::nil 5::nil x=5 nil; 2::1::nil

x::y 3::2::1::nil x=3; nil

y=2::1::nil

[] [] none [2]

[x] [5] x=5 []; [2,1]

[]::x []::[[1]] x = [[1]] [1]

(x, _ , y) (1, 2, 3) x=1 and y=3 matches all 3 elem tuples

(x, y, z::nil) (1,2,3::nil) x=1,y=2, z=3 (1,2, [3,2])

22SML ! BGR, Fall05

Patterns in FunctionPatterns in Function

AbstractionsAbstractions

• Functions on constructed types are often defined

using pattern matching to select the function body

relevant for specific values of the arguments

• Function abstraction form is:

fun <id> <pattern1> = <expr1> |

<id> <pattern2> = <expr2> | …|

<id> <patternK> = <exprk>

23SML ! BGR, Fall05

ExamplesExamples

fun length nil = 0 | length hd::tl = 1 + length (tl);

fun append (nil, r) = r | append (hd::tl, r) =
hd::append(tl, r);

fun power2 0 f x = x | power2 n f x =

power2 (n-1) f (f x)

Note: order of alternatives in function body matters
since SML picks first one that “matches”

24SML ! BGR, Fall05

Higher Order FunctionsHigher Order Functions

• Using functions as arguments to other functions
>fun map f nil = nil |

 map f (x::xs) = f(x) :: (map f xs);

val map fn:(‘a ! ‘b) ! ‘a list ! ‘b list

>fun add x y:int = x + y ;

val add = fn :int ! int ! int

>val succ = (add 1);

val succ = fn : int ! int

>map succ [1];

val it = [2] : int list

>map (fn n => 2*n) [1, 2, 3]; (*use of an anonymous fcn*)

val it = [2,4,6] : int list

25SML ! BGR, Fall05

Higher Order FunctionsHigher Order Functions

• Returning functions as values

e.g., succ is returned value from (add 1) which is a
function.

>val pred = add(~1);

val pred = f: int ! int

>comp f g x = f (g (x));

val comp = fn: (‘a ! ‘b) ! (‘c ! ‘a) ! ‘c ! ‘b

>comp succ pred 3;

val it = 3: int

>comp succ pred;

val it = fn: int ! int (*is the identity function on integers*)

26SML ! BGR, Fall05

(* this is an sml-based, use of higher order functions parser which uses exceptions to
signal syntax error and for control flow between alternative parses *)

exception Fail and Failtoken1 and Failtoken2 and Failvar and Failnum and
Failpgm;

(* composes 2 functions A and B *)

infix 3 &; fun op&(A,B) = B o A;

(* simulates an OR in a BNF rule*)

infix 2 //; fun f//g = fn s=>(f(s) handle Fail => g(s));

(* expr ::= <digit> == <digit> *)

val expr = let val f= (token "==") in num & f & num end;

(* note special syntax for mutually recursive functions *)

(* stmts are <var>:=<digit> OR if <expr> then <var>:=<digit> *)

fun stmt0 s = (let val f = (token ":=") in (var & f & num) s end)

and stmt1 s = (let val g=(token "if") val h=(token "else")

val w=(token "then")

in (g & expr & w & stmt & h & stmt) s end)

and stmt s = (stmt0 // stmt1) s;

fun pgm [] = raise Fail

 | pgm x = if ((stmt x)=[]) then (print "successful parse”; print “ Hooray!!”)

else print "failed parse, extra input";

 parserToshow.sml

27SML ! BGR, Fall05

ExceptionsExceptions
• Defined as a unique name, optional parameters

• Raise with the keyword raise

• If raised within calculation of an expression, can
define an associated handler

<expr> handle <match>

if <expr> evals w/o exception occurring, then value is
returned;

if <expr> raises an exception, then try to match raised
exception to a listed handler; if not possible, exception
escapes to enclosing handler or percolates up the stack
of exprs under evaluation until a handler is found

(f x) handle OutOfRange(0,0)= … | OutOfRange(n,m)=… etc.

in parseToshow.sml name of exception was used for debugging; as program failed in
different functions, uncaught exception told which function had failed

28SML ! BGR, Fall05

Defining OperatorsDefining Operators

Want to define composition as an infix operator with
2 operands, rather than a function, for ease of use

>infix 3 &; fun op&(A,B) = B o A;

Then what are the types of these functions?

>fun g x = (succ & pred) x; means (pred (succ x))

>val h = succ & pred; why is val correct here?

What’s going on here?

(* composes 2 functions A and B *)

infix 3 &; fun op&(A,B) = B o A;

(* simulates an OR in a BNF rule*)

infix 2 //; fun f//g = fn s=>(f(s) handle Fail => g(s));

compose.sml

29SML ! BGR, Fall05

Using Higher Order Using Higher Order FcnsFcns: &: &

(* expr ::= <digit> == <digit> *)

val expr = let val f= (token "==") in num & f & num end;

Here, we are directly coding the BNF rule as a functional

composition of parsers for each of the non-terminals and

terminal symbols

num recognizes digits, f calls lexer to recognize an equality

comparison operator

After looking at lexer, we can see that the type of expr is:

string-list --> string-list

30SML ! BGR, Fall05

(*____________the lexer_________________*)

(* recognizes token t *)

fun token t [] = raise Fail (*Failtoken1*)

 | token t (s::rest) = if t=s then rest else raise Fail (*Failtoken2*);

fun varId s = "a"<=s andalso s<="z";

(* recognizes a variable name *)

fun var (s::rest)= if (varId s)then rest else (print(s);raise Fail(*Failvar*))

 | var [] = (print "empty var"; raise Fail(*Failvar*));

(* build the comparisons *)

fun num (w::s) = if (w>="0" andalso w<="9") then s else raise Fail(*Failnum*)

 | num [] = raise Fail;(*Failnum*)

(*______________end of simple lexer_______*)

31SML ! BGR, Fall05

Mutually Recursive FunctionsMutually Recursive Functions

Need to define mutually recursive functions where need to use
one function’s name in defining the other and vice versa.
How can we do this?

e.g., definition of statements needs stmt in the body of the
if-stmt(stmt1) and needs stmt1 in the body of stmt

(* stmts are <var>:=<digit> OR if <expr> then <var>:=<digit> *)

fun stmt0 s = (let val f = (token ":=") in (var & f & num) s end)

and stmt1 s = (let val g=(token "if") val h=(token "else")

val w=(token "then")

in (g & expr & w & stmt & h & stmt) s end)

and stmt s = (stmt0 // stmt1) s;

32SML ! BGR, Fall05

Programs in ExamplePrograms in Example

Wrapping this up, a program is simply a statement. if
recognition succeeds and uses up all the input, then it is
successful; otherwise, it fails.

Print <string> is a simple output statement in SML, but it
sometimes ‘messes up’ the standard output you expect

Compound expressions can be formed from sequences of
expressions separated by semicolons

fun pgm [] = raise Fail

 | pgm x =if ((stmt x)=[]) then (print "successful parse”; print “ Hooray!!”) else
print "failed parse, extra input";

-pgm [“x”,”:=“,”1”];

successful parse, Hooray!!val it = () : unit;

