
1
Types5 ! BGR, Fall05

TypesTypes

• What is a type?

• Type reconstruction (inference) for a simple
PL

• Type safe programs

• Strong type systems

• Type checking

– Static versus dynamic

2
Types5 ! BGR, Fall05

TypesTypes

• Polymorphism

– Ad hoc: coercion, overloading

– Parametric: generics

• Typing functions

– Coercion, conversion, reconstruction

• Rich area of programming language research

as people try to provide safety assertions

about code as part of type systems

3
Types5 ! BGR, Fall05

What is a type?What is a type?

• Type: a set of values and meaningful
operations on them

• Types provide semantic sanity checks on
programs

– Analogous to units conversions in physics,
convert feet per second to inches per minute

• (feet/second) (seconds/minute) (inches/feet)

– How specify types? How check their usage in
actual programs?

4
Types5 ! BGR, Fall05

TypeType EquivalenceEquivalence

• Governs which constructed types are

considered “equivalent” for operations such

as assignment

• Two main flavors:

– Structural equivalence

– Name equivalence

5
Types5 ! BGR, Fall05

Equality of Structured TypesEquality of Structured Types

• Structural equivalence: types are equivalent as terms

– Same primitive type

– Formed by application of same type constructors to

structurally equivalent types

– Shortcoming as shown in Pascal:

type salary: int; var s: salary;

type height: int; var y: height

cannot outlaw s+y by structural equivalence rules.

– Used by Algol-68, Modula-3, ML and C (except for its

structs)

6
Types5 ! BGR, Fall05

Equality of Structured TypesEquality of Structured Types
• Name equivalence: use name of type to assert

equivalence
• In Ada: type height: int

 var x: list (int) x,y considered same type

 var y: list (int) y,s considered different types!

 var s: list (height)

– Shortcoming, in Pascal

type cell = record info: int, next: ^cell end;

type link = ^ cell;

var first, last: link;

begin if first.next = last then… comparison isn’t valid

 by either name or struct. eqtypes: ^cell link

Used by Java, Ada

7
Types5 ! BGR, Fall05

Equality of Structured TypesEquality of Structured Types

• Declaration equivalence: variables need to be

declared in same declaration statement.

p: ^cell p,q not compatible types

q: ^cell s,t are compatible types

s,t: ^cell

• Bizarre rule not longer used (ISO Pascal)

8
Types5 ! BGR, Fall05

How type reconstructionHow type reconstruction

(type inference) works?(type inference) works?

"# <expression> : <type>

1. can always type a constant "# 5.8 : ft/sec

2. can build rules for combining types in expressions

e.g., Distance = Velocity * Time, Conversions

"# e1 : ft/sec, "# e2: sec "# e1:ft/sec, "# e2: sec/min

"# e1*e2 : ft "# e1*e2 : ft/min

Velocity = Distance / Time

 "# e1: ft, "# e2: sec

"# e1/e2: ft/sec

9
Types5 ! BGR, Fall05

Type ReconstructionType Reconstruction

• See handout for small expression language
definition

Types: % $ Int | Char | Bool … primitive PL types

% $ Pointer(%) | Tuple(%,%) | List(%) | …constructed PL

Record(label %, label %, ...) types

Expressions: e $ <intLiteral> | <listLiteral>|…

e $ varId | (e)

e $ e mod e | e + e | e and e | e or e | not e …
Boolean/numerical operations

e $ e eq e comparison operator

10
Types5 ! BGR, Fall05

Type ReconstructionType Reconstruction

e $ deref e pointer operation

e $ fst e | snd e | pair(e,e) tuple operations

e $ hd e | tail e | cons (e,e) list operations

where <intLiteral> $ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<listLiteral> $ nil, etc.

• To perform type reconstruction, we need

assumptions for types of constants and then

define type deduction rules

list constructor

tuple constructor

11
Types5 ! BGR, Fall05

Type ReconstructionType Reconstruction

• Type rules define the types of results of legal
operations

Constants: c :% |# c:% given in type environment

Variables: y: % |# y: % e.g., in declarations

Arithmetic: |# e1: Int, |# e2: Int means mod op

 |# (e1 mod e2) : Int only applicable to

 integers

Equality: |# e1 : % , |# e2 : % can only compare

 |# (e1 eq e2) : Bool exprs of same type

 result is Boolean

12
Types5 ! BGR, Fall05

Type ReconstructionType Reconstruction

Deref: |# e: Pointer(%) can only apply deref operator

 |# deref(e) : % to pointer type

• Examples of use of rules

fst(1, 2.0) + snd(3.5, 5)

%1 = Tuple (Int, Real), %2 = Tuple (Real, Int)

 fst(!1) : Int, snd(!2) : Int, therefore + operation is well-typed

fst(1, 2.0) + hd(cons(5, nil))

!1 = Tuple(Int, Real), and we want: !2 = List(Int)

but how to get this?

13
Types5 ! BGR, Fall05

Type ReconstructionType Reconstruction

• Need more rules to type lists:
[Cons] |# e1: % , |# e2: List(%) (1)

 |# cons(e1, e2): List(%)
 |# nil: List[_] (2) read this as List of any type

or instead use rules (1) and (3):

 |# e:% (3)
 |# cons(e, nil) : List(%)

means lists are made up of homogeneously
type elements, but not necessarily of
primitive type e.g., List (Tuple(Int, Bool)) is legal

14
Types5 ! BGR, Fall05

Definitions Definitions ((SethiSethi, Ch 4.9), Ch 4.9)

• Type safe: program that executes without
type errors

• Strong type system: if it accepts only safe
expressions (guaranteed to evaluate without a
type error)

• PL is statically typed if the type of any
expression can be fully determined at compile-
time. How?
– Explicit declaration, or

– Type reconstruction

15
Types5 ! BGR, Fall05

Definitions, cont.Definitions, cont.

• PL is dynamically typed if during execution

type checking occurs

• PL is strongly typed (cf Cardelli+Wegner “On

Understanding Types, Data Abstraction, Polymorphism”,

Computer Surveys, 12/85): all expressions are type

consistent

– It is possible to use static and dynamic checking

16
Types5 ! BGR, Fall05

Definitions, cont.Definitions, cont.
all programs

type safe programs

programs written in PL

with strong type system

programs written in PL

with weak type systems;

weak type systems allow

unsafe programs

programs written

in PL with statically

checkable type system

17
Types5 ! BGR, Fall05

Static Type CheckingStatic Type Checking

• Points out type errors early

• No run-time overhead

• Not always possible

– Pascal, Java: array index bounds part of array

type; need run-time check for subscript out of

bounds

• Highly desirable - key design feature in

modern PLs

18
Types5 ! BGR, Fall05

Dynamic Type CheckingDynamic Type Checking

• Incurs run-time overhead plus needs space
for type tags

– Operations need to check type tags of their
operands before executing

• Claim programs are harder to debug

• Claim it allows more flexibility in PL design
– Pascal: almost statically typed, except for variant records

and array indices

– C: needs dynamic checking for unions; indiscriminate
casting thwarts type checking

– Algol68, SML: statically typed (use discriminated unions)

19
Types5 ! BGR, Fall05

Algol68 ExampleAlgol68 Example
from Computing Surveys, June 1976 A. Tanenbaum article on Algol68:

union (int, real, bool) kitchensink;

kitchensink := 3;

kitchensink := 3.14159;

if rndom < .5 then kitchensink := 1

else kitchensink := 2.76;

fi

case kitchensink in

(int I): print ((“integer”, I));

(real r): print ((“real”, r));

esac

20
Types5 ! BGR, Fall05

Typing StatementsTyping Statements

• Problem: what to do about typing

statements?

use special type called void

|# y: % , |# e: % |# s1: void, s2:void |#b:bool,|# s:void

|# y:=e : void |# s1; s2 :void |# if b then s:void
Assignment Stmt sequence If stmt

21
Types5 ! BGR, Fall05

Typing FunctionsTyping Functions

• Want to write a function once and be able to use it

on arguments of different types
length L = if L=nil then 0 else 1 + length (tl(L));

has type signature:

length: List(_) " Int

– Examples from our small expression language

cons : ! " List[!] " List [!]

pair: # * ! " Tuple(#,!)

fst: Tuple(#,!) " #

if_then_else: bool * ! * ! " !

22
Types5 ! BGR, Fall05

Typing FunctionsTyping Functions

• Need for type variables to represent unknown types

during reconstruction

$%. List(%) " int is type of SML length function

deref: $&. Pointer(&) " &

Note: &' does not include type error, which is used in type

checking

• Need new inference rule for function application:

 |# e1: (" !, |# e2: (

 |# e1(e2) : %

23
Types5 ! BGR, Fall05

Typing FunctionsTyping Functions

• Functions are usually typed in their curried

form

incr(k,x) = x + k; plus(k), curried incr

incr: Tuple(int, int) " int plus: int " (int " int)

In curried form can use previous slide’s inference

rule

24
Types5 ! BGR, Fall05

TypesTypes

(Cardelli+Wegner Computer Surveys, 12/85)

• Monomorphic: Conventionally, PL objects

have one type

• Polymorphic: Some PLs allow objects to have

more than one type (e.g., nil value for lists

and pointers)

25
Types5 ! BGR, Fall05

PolymorphismPolymorphism

• Ad hoc (apparent) : function appears to work
on several different types, but may behave in
different ways for different types

– Overloading: same name denotes different
functions; compiler decides which one by context

– Coercion: semantic operation needed to convert
an argument to the correct type expected by the
function

• Statically or dynamically

• Algol68 only allowed explicit type conversions

26
Types5 ! BGR, Fall05

PolymorphismPolymorphism

• Parametric: function works uniformly on a

range of types; (e.g., cons, length); often

executes the same code no matter what type

the arguments are

– Generic functions: parameterized template which has to

be instantiated to actual parameter values before usage

• Macro-expansion semantics at compile-time

– True parametric polymorphic functions have only 1 copy

of code

• ML is the paradigm PL

27
Types5 ! BGR, Fall05

PolymorphismPolymorphism

• Ada, Pascal are monomorphic, but have

– overloaded arithmetic operators, + * can have

mixes of real or int arguments

– coercion, int " real allowed

– subtyping, 1..N is subtype of int

– value sharing, nil shared by all pointer types

28
Types5 ! BGR, Fall05

Typing Functions, Typing Functions, (ASU 6.6)(ASU 6.6)

• High-level view

1. Introduce new type variables for the procedure
and its parameters.

2. Setup equations that must hold for these
variables based on statements within the
procedure (infer compatible types from uses).

3. Solve these equations.

a. If reach a type error, report it.

b. If can get values for all type variables, then the
equations are consistent.

29
Types5 ! BGR, Fall05

Typing FunctionsTyping Functions

c. Note: type value solution process involves using
unification to see if two type variables, currently
bound to specific types (represented by trees), can
be unified to the same type; uses the union-find
algorithm

4. Add a new variable to the type environment to
represent this function

+ = Analyze(fcn_body, E)

• For an example, we will type the SML length
function for lists

30
Types5 ! BGR, Fall05

Analyze (e, E)Analyze (e, E)
• e is expression, E is type environment

• if e is a type variable %, return E[%]
• if e is an identifier id, return E[id]

– with all & variables renamed and & dropped

• e.g., & ', ' x List(')##>List(') is type of cons

• e.g., & ', bool x ' x ' -->' is type of if

• e.g., & ', '##>) becomes *##>), an arbitrary function

• if e is function application, f(e1,…,ek)

– let t1 - Analyze (e1, E)…

– let s - Analyze (f, E)

– introduce fresh type variable, +
– add equation (t1 x t2 x…x tk --> +) = s and return +

• if e is a function definition…..

31
Types5 ! BGR, Fall05

Example - Trace Example - Trace AlgmAlgm

Analyze (lng (n) , if (null n) then 0 else (1 + lng(tl n)), E);

Rule 1. Extend E[n] = * , E[lng] = {* " +}

Rule 2. Analyze function body.

Analyze (if ((null n), 0, (1+lng(tl n))), E).

t1 = Analyze (e1, E) for e1 = (null n) fcn application

t11 = Analyze (n) ! E[n] = {*} identifier

s11 = Analyze (null) ! E[null]= {list ' " bool} identifier

get new type variable)
* $) = list ' $ bool (1)

return) as type of function application.

32
Types5 ! BGR, Fall05

ExampleExample

t2 = Analyze(0,E) ! {int} constant

t3 = Analyze (1+lng(tl n)) another fcn application

t31=Analyze(1,E) ! {int}

t32 = Analyze(lng(tl n), E)

 t321 = Analyze((tl n),E)

t3211 = Analyze(n,E) ! {*} identifier

 s3211 = Analyze(tl,E) ! {list µ $ list µ}
 new type variable (
 * $ (= list µ $ list µ (2)
 s321 = Analyze(lng,E) ! {* $ + }
 new type variable -
 ($ - = * $ + (3)
 return - as type of function application

33
Types5 ! BGR, Fall05

ExampleExample

s33 = Analyze(+,E) ! {int * int $ int}

new type variable .

int * - $. = int * int $ int (4)

return .

s1 = Analyze(if,E) = {bool * / * / $ /}

new type variable 0

) * int * . $ 0 = bool * / * / $ / (5)

return 0

34
Types5 ! BGR, Fall05

ExampleExample

Rule 3: solve equations using unification using mgu
(1) * $) = list ' $ bool

(2) * $ (= list µ $list µ
(3) ($ - = * $ +
(4) int * - $. = int * int $ int

(5)) * int * . $ 0 = bool * / * / $ /
) = bool (from 1.)

* = (= list µ (from 2.,3.)

* = list ' (from 1.) (note: list ' and list µ are same type)

+ = - = . = int (from 3.,4.)

lng: * $ + = list µ $ int

