Types

- What is a type?
- Type reconstruction (inference) for a simple PL
- Type safe programs
- Strong type systems
- Type checking
 - Static versus dynamic

Types5 © BGR, Fall05

Types

- Polymorphism
 - Ad hoc: coercion, overloading
 - Parametric: generics
- Typing functions
 - Coercion, conversion, reconstruction
- Rich area of programming language research as people try to provide safety assertions about code as part of type systems

What is a type?

- *Type*: a set of values and meaningful operations on them
- Types provide semantic *sanity checks* on programs
 - Analogous to units conversions in physics, convert feet per second to inches per minute
 - (feet/second) (seconds/minute) (inches/feet)
 - How specify types? How check their usage in actual programs?

3

4

Types5 © BGR, Fall05

Type Equivalence

- Governs which constructed types are considered "equivalent" for operations such as assignment
- Two main flavors:
 - Structural equivalence
 - Name equivalence

Equality of Structured Types

- Structural equivalence: types are equivalent as terms
 - Same primitive type
 - Formed by application of same type constructors to structurally equivalent types
 - Shortcoming as shown in Pascal: type salary: int; var s: salary; type height: int; var y: height cannot outlaw s+y by structural equivalence rules.
 - <u>Used by Algol-68, Modula-3, ML and C</u> (except for its structs)

Types5 © BGR, Fall05

Equality of Structured Types

- *Name equivalence:* use name of type to assert equivalence
 - In Ada: type height: int

var x: list (int)x,y considered same typevar y: list (int)y,s considered different types!var s: list (height)

- Shortcoming, in Pascal

type cell = record info: int, next: ^cell end;

type link = ^ cell;

var first, last: link;

begin if first.next = last then... comparison isn't valid

types: ^cell link by either name or struct. eq

Used by Java, Ada

Equality of Structured Types

- *Declaration equivalence:* variables need to be declared in same declaration statement.
 - p: ^cell p,q not compatible types
 q: ^cell s,t are compatible types
 - s,t: ^cell
- Bizarre rule not longer used (ISO Pascal)

Types5 © BGR, Fall05

How type reconstruction (type inference) works?

7

8

|- <expression> : <type>
1. can always type a constant |- 5.8 : ft/sec
2. can build rules for combining types in expressions
e.g., Distance = Velocity * Time, Conversions
|- e1 : ft/sec, |- e2: sec
|- e1*e2 : ft |- e1*e2 : ft/min
Velocity = Distance / Time
|- e1: ft, |- e2: sec
|- e1/e2: ft/sec

Type Reconstruction

• See handout for small expression language definition

 $Types: \tau \rightarrow Int | Char | Bool ... primitive PL types$ $\tau \rightarrow Pointer(\tau) | Tuple(\tau,\tau) | List(\tau) | ...constructed PL$ Record(label τ , label τ , ...) types $Expressions: e \rightarrow \langle intLiteral \rangle | \langle listLiteral \rangle | ...$ $e \rightarrow varId | (e)$ $e \rightarrow e \mod e | e + e | e \text{ and } e | e \text{ or } e | \text{ not } e \dots$ Boolean/numerical operations $e \rightarrow e \text{ eq } e \quad comparison operator$

Types5 © BGR, Fall05

Type Reconstruction

 $e \rightarrow deref e$ pointer operation tuple constructor $e \rightarrow fst e | snd e | pair(e,e)$ tuple operations $e \rightarrow hd e | tail e | cons (e,e)$ list operations list constructor where $\langle intLiteral \rangle \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$ $\langle listLiteral \rangle \rightarrow nil$, etc.

• To perform type reconstruction, we need assumptions for types of constants and then define type deduction rules

Types5 © BGR, Fall05

Type Reconstruction

• Type rules define the types of results of legal operations

Constants:	c :t l– c:t given in t	ype environment
Variables:	y: $\tau \mid -y$: τ e.g., in declarations	
Arithmetic:	<u> – e1: Int, – e2: Int</u>	_means mod op
	I- (e1 mod e2) : Int	only applicable to integers
Equality:	$\frac{ -e1:\tau, -e2:\tau}{ -(e1 eq e2):Bool}$	can only compare exprs of same type result is Boolean

Types5 © BGR, Fall05

Type Reconstruction

Deref:	<u> - e: Pointer(τ)</u>	can only apply deref operator
	$ -deref(e):\tau$	to pointer type

• Examples of use of rules

 $\begin{aligned} fst(1, 2.0) + snd(3.5, 5) \\ \tau 1 &= \text{Tuple (Int, Real), } \tau 2 = \text{Tuple (Real, Int)} \\ fst(\tau 1) &: \text{Int, } snd(\tau 2) : \text{Int, therefore + operation is well-typed} \\ fst(1, 2.0) + hd(cons(5, nil)) \\ \tau 1 &= \text{Tuple(Int, Real), and we want: } \tau 2 = \text{List(Int)} \\ \text{but how to get this?} \end{aligned}$

Type Reconstruction

Need more rules to type lists:
[Cons] |- e1: τ, |- e2: List(τ) (1)
|- cons(e1, e2): List(τ)
|- nil: List[_] (2) read this as List of any type
or instead use rules (1) and (3):
|- e:τ (3)
|- cons(e, nil) : List(τ)
means lists are made up of homogeneously type elements, but not necessarily of primitive type e.g., List (Tuple(Int, Bool)) is legal

Types5 © BGR, Fall05

Definitions (Sethi, Ch 4.9)

- *Type safe:* program that executes without type errors
- *Strong* type system: if it accepts only safe expressions (guaranteed to evaluate without a type error)
- PL is *statically typed* if the type of any expression can be fully determined at compile-time. How?

- Explicit declaration, or

– Type reconstruction

Definitions, cont.

- PL is *dynamically typed* if during execution type checking occurs
- PL is *strongly typed* (cf Cardelli+Wegner "On Understanding Types, Data Abstraction, Polymorphism", Computer Surveys, 12/85): all expressions are type consistent

- It is possible to use static and dynamic checking

Types5 © BGR, Fall05

Definitions, cont.

Static Type Checking

- Points out type errors early
- No run-time overhead
- Not always possible
 - Pascal, Java: array index bounds part of array type; need run-time check for *subscript out of bounds*
- Highly desirable key design feature in modern PLs

Types5 © BGR, Fall05

Dynamic Type Checking

- Incurs run-time overhead plus needs space for type tags
 - Operations need to check type tags of their operands before executing
- Claim programs are harder to debug
- Claim it allows more flexibility in PL design
 - Pascal: almost statically typed, except for variant records and array indices
 - C: needs dynamic checking for unions; indiscriminate casting thwarts type checking
 - Algol68, SML: statically typed (use discriminated unions)

Algol68 Example

```
from Computing Surveys, June 1976 A. Tanenbaum article on Algol68:
union (int, real, bool) kitchensink;
kitchensink := 3;
kitchensink := 3.14159;
if rndom < .5 then kitchensink := 1
        else kitchensink := 2.76;
fi
case kitchensink in
(int I): print (("integer", I));
(real r): print (("real", r));
esac
```

```
Types5 © BGR, Fall05
```

Typing Statements

• Problem: what to do about typing statements?

use special type called void

<u> - y: τ , - e: τ</u>	<u> - s1: void, s2:void</u>	<u> -b:bool, - s:void</u>
l– y:=e : void	l– s1; s2 :void	l– if b then s:void
Assignment	Stmt sequence	If stmt

Typing Functions

• Want to write a function once and be able to use it on arguments of different types

length L = if L=nil then 0 else 1 + length (tl(L)); has type signature: length: List(_) \rightarrow Int - Examples from our small expression language cons : $\tau \rightarrow List[\tau] \rightarrow List[\tau]$ pair: $\sigma * \tau \rightarrow Tuple(\sigma, \tau)$ fst: Tuple(σ, τ) $\rightarrow \sigma$ if_then_else: bool * $\tau * \tau \rightarrow \tau$

Types5 © BGR, Fall05

21

Typing Functions

• Need for type variables to represent unknown types during reconstruction

 $\forall \alpha. List(\alpha) \rightarrow int$ is type of SML length function deref: $\forall \beta. Pointer(\beta) \rightarrow \beta$

Note: $\forall \alpha$ does not include type *error*, which is used in type checking

• Need new inference rule for function application:

$$\frac{|-e1:\sigma \rightarrow \tau, |-e2:\sigma}{|-e1(e2):\tau}$$

Typing Functions

• Functions are usually typed in their curried form

incr(k,x) = x + k; plus(k), curried incr incr: Tuple(int, int) \rightarrow int plus: int \rightarrow (int \rightarrow int)

In curried form can use previous slide's inference rule

Types5 © BGR, Fall05

Types

(Cardelli+Wegner Computer Surveys, 12/85)

- *Monomorphic*: Conventionally, PL objects have one type
- *Polymorphic:* Some PLs allow objects to have more than one type (e.g., *nil* value for lists and pointers)

Polymorphism

- *Ad hoc (apparent)* : function appears to work on several different types, but may behave in different ways for different types
 - Overloading: same name denotes different functions; compiler decides which one by context
 - *Coercion:* semantic operation needed to convert an argument to the correct type expected by the function
 - Statically or dynamically
 - Algol68 only allowed explicit type conversions

Types5 © BGR, Fall05

Polymorphism

- *Parametric:* function works uniformly on a range of types; (e.g., *cons*, *length*); often executes the same code no matter what type the arguments are
 - Generic functions: parameterized template which has to be instantiated to actual parameter values before usage
 - Macro-expansion semantics at compile-time
 - True parametric polymorphic functions have only 1 copy of code
 - ML is the paradigm PL

Polymorphism

- Ada, Pascal are monomorphic, but have
 - overloaded arithmetic operators, + * can have mixes of *real* or *int* arguments
 - coercion, *int* \rightarrow *real* allowed
 - subtyping, 1..N is subtype of *int*
 - value sharing, *nil* shared by all pointer types

Types5 © BGR, Fall05

Typing Functions, (ASU 6.6)

- High-level view
 - **1. Introduce new type variables for the procedure and its parameters.**
 - 2. Setup equations that must hold for these variables based on statements within the procedure (infer compatible types from uses).
 - **3.** Solve these equations.

a. If reach a type error, report it.

b. If can get values for all type variables, then the equations are *consistent*.

Typing Functions

- c. Note: type value solution process involves using unification to see if two type variables, currently bound to specific types (represented by trees), can be unified to the same type; uses the union-find algorithm
- 4. Add a new variable to the type environment to represent this function

 $\delta = Analyze(fcn_body, E)$

• For an example, we will type the SML length function for lists

Types5 © BGR, Fall05

Analyze (e, E)

- e is expression, E is type environment
- if e is a type variable τ , return $E[\tau]$
- if e is an identifier *id*, return E[*id*]
 - with all ∀ variables renamed and ∀ dropped
 - e.g., $\forall \alpha, \alpha x \operatorname{List}(\alpha) --> \operatorname{List}(\alpha)$ is type of *cons*
 - e.g., $\forall \alpha$, bool x α x α --> α is type of *if*
 - e.g., $\forall \alpha, \alpha -> \beta$ becomes $\gamma -> \beta$, an arbitrary function

• if e is function application, f(e1,...,ek)

- let t1 Analyze (e1, E)...
- let s Analyze (f, E)
- introduce fresh type variable, δ
- add equation (t1 x t2 x...x tk --> δ) = s and return δ
- if e is a function definition.....

Types5 © BGR, Fall05

Example - Trace Algm

Analyze (lng (n) = if (null n) then 0 else (1 + lng(tl n)), E); Rule 1. Extend E[n] = γ , E[lng] = { $\gamma \rightarrow \delta$ } Rule 2. Analyze function body. Analyze (if ((null n), 0, (1+lng(tl n))), E). t1 = Analyze (e1, E) for e1 = (null n) fcn application t11 = Analyze (n) \approx E[n] = { γ } identifier s11 = Analyze (null) \approx E[null]= {list $\alpha \rightarrow$ bool} identifier get new type variable β $\gamma \rightarrow \beta$ = list $\alpha \rightarrow$ bool (1) return β as type of function application.

Types5 © BGR, Fall05

31

Example

```
t2 = Analyze(0,E) \approx {int} constant
t3 = Analyze (1+lng(tl n)) another fcn application
t31=Analyze(1,E) \approx {int}
t32 = Analyze(lng(tl n), E)
t321 = Analyze((tl n),E)
t3211 = Analyze(n,E) \approx {\gamma} identifier
s3211 = Analyze(tl,E) \approx {list \mu \rightarrow list \mu}
new type variable \sigma
\gamma \rightarrow \sigma = list \mu \rightarrow list \mu (2)
s321 = Analyze(lng,E) \approx {\gamma \rightarrow \delta}
new type variable \Gamma
\sigma \rightarrow \Gamma = \gamma \rightarrow \delta (3)
return \Gamma as type of function application
```

Example

 $s33 = Analyze(+,E) \approx \{int * int \rightarrow int\}$ new type variable Δ int * $\Gamma \rightarrow \Delta = int * int \rightarrow int (4)$ return Δ $s1 = Analyze(if,E) = \{bool * \psi * \psi \rightarrow \psi\}$ new type variable ρ $\beta * int * \Delta \rightarrow \rho = bool * \psi * \psi \rightarrow \psi (5)$ return ρ

Types5 © BGR, Fall05

33

Example

Rule 3: solve equations using unification using mgu

(1) $\gamma \rightarrow \beta = \text{list } \alpha \rightarrow \text{bool}$ (2) $\gamma \rightarrow \sigma = \text{list } \mu \rightarrow \text{list } \mu$ (3) $\sigma \rightarrow \Gamma = \gamma \rightarrow \delta$ (4) int * $\Gamma \rightarrow \Delta = \text{int * int } \rightarrow \text{int}$ (5) β * int * $\Delta \rightarrow \rho = \text{bool}$ * ψ * $\psi \rightarrow \psi$ $\beta = \text{bool}$ (from 1.) $\gamma = \sigma = \text{list } \mu$ (from 2.,3.) $\gamma = \text{list } \alpha$ (from 1.) (note: list α and list μ are same type) $\delta = \Gamma = \Delta = \text{int}$ (from 3.,4.) $\text{lng: } \gamma \rightarrow \delta = \text{list } \mu \rightarrow \text{int}$