
A Framework for Reducing the Cost of Instrumented Code

Matthew Arnold� Barbara G. Ryder

Rutgers University
fmarnold,ryderg@cs.rutgers.edu

ABSTRACT
Instrumenting code to collect runtime pro�ling information
can substantially degrade performance, making instrumen-
tation diÆcult to perform at runtime in an adaptive system.
We present a general framework for instrumenting code that
uses �ne grained sampling to allow expensive instrumenta-
tion to be performed accurately with low overhead. Our
framework does not rely on any hardware or operating sys-
tem support, and is fully tunable; the sample rate can ad-
justed, at any time, to match the type of instrumentation
being performed. We present experimental results validat-
ing the overhead and accuracy of our technique.

1. INTRODUCTION
The �rst wave of virtual machines with JIT compilation re-
lied on simple static strategies for choosing compilation tar-
gets, typically compiling each method with a �xed set of
optimizations the �rst time it was invoked. Examples of
such virtual machines include [1,13,17,22,28, 32]. A second
wave of more sophisticated virtual machines [5,21,26,27,29]
moved beyond this simple strategy by adaptively selecting
a subset of all methods for optimization, attempting to fo-
cus optimization e�ort on program hot spots. This selec-
tive optimization approach avoids the overhead of optimiz-
ing all methods, yielding larger performance improvements
for shorter running programs [6].

However, long running applications, such as server applica-
tions, will easily amortize the cost of optimizing all methods,
for any reasonable level of optimization. For these applica-
tions the most substantial performance improvements will
come from feedback-directed optimizations, where pro�ling
information is used to decide not only what to optimize, but
how to optimize. Instrumentation is a common way of �g-
uring out how to optimize. The overhead of instrumented
code can make it diÆcult, or even impossible, to perform
instrumentation at runtime in an adaptive system.

�Thank IBM for their support here. RU grants also.

In this work we present a general framework for instrument-
ing code that allows previously expensive instrumentation
to be performed accurately with low overhead, averaging
�6% using our naive implementation. This is accomplished
by using compiler controlled counter-based sampling to al-
low �ne-grained switching between instrumented and non-
instrumented code. To the best of our knowledge, this is the
�rst framework that allows arbitrary instrumentation to be
performed with low overhead by using �ne grained sampling.

The reduction in overhead provided by our sampling frame-
work has the following advantages:

� The framework does not rely on any hardware or op-
erating system support.

� The framework is
exible and tunable. It allows the
sampling rate to be modi�ed at any time, including
being varied at runtime during the same execution.

� Instrumentation can be performed for a longer period
of time, while causing only minimal performance de-
gredation.

� Expensive instrumentation techniques can be used at
runtime even without the ability to perform stack
frame rewriting.

� Overhead is controlled completely by the framework,
allowing implementors of instrumentation techniques
to concentrate on developing new techniques quickly
and correctly, rather than trying to minimize overhead.

� Multiple types of instrumentation may be combined
together at once, without the normal concern for over-
head. This is a very attractive approach for an adap-
tive system, as it would allow several forms of instru-
mentation to be performed at the same time while re-
quiring the method to be recompiled only once.

� Most instrumentation techniques do not need to be
modi�ed, and are simply \plugged into" the frame-
work.

We validate the framework by providing experimental ev-
idence of the overhead and accuracy when applied to two
examples of instrumentation. Our results show that high
accuracy can be achieved (98{99% overlap with a perfect
pro�le) with low overhead (�6% even with a naive imple-
mentation).

Section 3 describes the instrumentation framework in de-
tail. Section 4 describes two variations designed to reduce
the space required by the framework. Section 5 describes
an experimental evaluation of the overhead and acuracy of
our technique. Sections 6 and 7 discuss related work and
conclusions, respectively.

2. BACKGROUND
There exists a large body of work on collecting o�ine pro-
�les [3,11,12,14,23], as well as optimizations based on o�ine
pro�les [15, 16, 18, 19, 24]. Most of these techniques instru-
ment the code to collect detailed information about program
execution. Unfortunately, instrumentation can cause sub-
stantial performance degredation. Overhead in the range
of 30%{1,000% over non-instrumented code is not uncom-
mon [3, 11, 12, 15, 16, 24], and sometimes overhead in the
range of 10,000% (100 times slower) is reported [15].

The overhead of executing instrumented code can make
it diÆcult, or even impossible, to perform instrumenta-
tion at runtime in an adaptive system. Some online sys-
tems [5, 20, 21] apply limited forms of feedback-directed op-
timizations, although most of the o�ine work mentioned
previously has not yet been applied in fully automated on-
line systems. Work has been done for reducing the cost of
speci�c types of instrumentation [11, 14, 23], however it is
unclear whether these techniques reduce overhead enough
to allow it to run unnoticed in an adaptive system.

A more general solution for performing instrumentation at
runtime is to execute the instrumented code for only a short
period of time to keep overhead to a minimum. This can be
acheived by compiling an instrumented version of a particu-
lar method, and having the next invocation of that method
call the instrumented version. After collecting instrumen-
tation for the desired duration, the next invocation calls
the original, non-instrumented version. Although this tech-
nique works when the instrumented method does not run for
longer than the desired instrumentation period, if the instru-
mented method does not return for a long period of time,
execution would be stuck in the (slow) instrumented version.
When this occurs, switching back to non-instrumented code
requires the ability to perform stack frame rewriting [25],
which can be a diÆcult problem for optimized code.1

Even when stack-frame rewriting is possible, an expensive
instrumentation would have to be used for only a short
amount of time, to keep overhead low; however, this is still
undesirable because pro�ling for a short period of time may
not result in a pro�le that is representative of overall pro-
gram behavior.

3. FRAMEWORK
This section describes our sampling framework. Section 3.1
describes existing trigger mechanisms, and Section 3.2 de-
scribes counter-based sampling, the trigger mechanism used
by our framework.

Prior to our work, a system performing instrumentation

1Because the execution patterns of optimized code can vary
substantially from unoptimized code, an adaptive system
will most likely perform instrumentation in optimized code.

Figure 1: The three versions of the code in our
framework. (A) represents the orignal code. (B)
represents a minimally instrumented version con-
taining checks that allow control to transfer into (C)
in a �ne-grained and controlled manner. (C) repre-
sents the fully instrumented code.

would have two versions of a method, the original and the
instrumented. Our framework introduces a third version of
the code, called the checking code, as shown in Figure 1.
The checking code is almost identical to the original code,
but is modi�ed slightly to allow execution to swap back and
forth between the checking code and instrumented code in
a very �ne grained, but controlled manner.

The total overhead of the instrumentation can be kept to a
minimum by ensuring that most of the time is spent in the
checking code. On regular sample intervals, execution moves
into the instrumented code for a small, bounded amount of
time.

The switching between the checking and instrumented code
is accomplished as follows. The checking has conditional
branches inserted (which we refer to as checks) that moni-
tor a sample condition. When the sample condition is true,
control jumps to instrumented code, rather than continu-
ing in the checking code. Checks are currently placed on
all method entries and backward branches (which will be
referred to as backedges) in the checking code, as shown
by Figure 2. This placement of the checks guarantees that
(a) only a bounded amount of execution will occur between
checks, and (b) all code has the opportunity to be sampled.

The instrumented code is also modi�ed so that there are
no backedges within the instrumented code (as shown in
Figure 2). Instead, all backedges in the instrumented code
transfer control back to the checking code, ensuring that
only a bounded amount of time is spent in the instrumented
code during each sample.

This framework has several desirable properties. First, the
ratio of time spent in instrumented code vs. checking code
can be controlled by changing the rate at which the sample
condition is true. The sample rate can be adjusted, depend-
ing on the overhead of the particular instrumentation being
applied, to keep overhead to a minimum. Techniques for
controlling the sample rate are discussed next in Section 3.1.

This framework also has the property that the checking code
performs checks on method entries and backedges only; thus

Figure 2: Illustration of the
ow of controll be-
tween the instrumented and non-instrumented code.
All method entries and backedges in the non-
instrumented code contain a conditional branch that
jumps to the instrumented code if the sample condi-
tion is true. All backedges in the instrumented code
are modi�ed to return to non-instrumented code.

the overhead of the checking code is kept to a minimum,
and the number of checks executed is independent of the
instrumentation being performed. We refer to this property
as Invariant 1 for ease of reference.

invariant 1. The number of checks executed in the
checking code is equal to the number of backedges and meth-
ods entries executed, independent of the instrumentation be-
ing performed by the instrumented code.

Although our sampling framework does not totally eliminate
all bene�ts of stack-frame rewriting, it greatly reduces the
need for it. Even if an instrumented method gets stuck
on the stack, setting the sample condition permanently to
false will ensure that execution remains in the checking code.
Execution will not switch back to the original code until the
method exits (nor can a newly optimized version of the code
execute); however, the overhead of the checking code is small
enough to be of little concern, especially compared to the
cost of instrumentation.

Of course, there are some di�erences between executing in-
strumentation exhaustively and executing it only on sample
intervals. For example, with exhaustive instrumentation it is
possible to determine that a particular event never occured
during the pro�led interval, whereas this is not possible with
a sampled pro�le. However, this is not a serious restriction
because is unlikely that this type of functionality would be
useful for an adaptive JVM; even when an event doesn't oc-
cur during a period of exhaustive instrumentation, it doesn't
guarantee it won't happen in the future. Most of the com-
mon pro�ling techniques (basic block pro�ling, intraproce-
dural path pro�ling, �eld access pro�ling, value pro�ling,
etc..) are designed to count some sort of event, with the
goal of identifying the events that occur most frequently.
These types of pro�ling work unmodi�ed in our sampling
framework.

More complex pro�ling techniques may assume that events
are observed exhaustively, such as [11], which updates a con-
text sensitive data structure on all method entries and exits.
Pro�ling techniques such as these will need to be modi�ed to
produce accurate results in our sampling framework; how-
ever, work such as [8, 31] are examples of how this can be
achieved.

3.1 Trigger mechanisms
The framework described in Section 3 relies on a trigger to
determine when execution should transfer into the instru-
mented code. To keep overhead low, samples must be taken
infrequently enough to ensure that the majority of execution
remains in the checking code. However, to ensure accuracy,
samples must be taken frequently enough to allow a rea-
sonable sample set to be collected. Even more importantly,
samples must be triggered in a statistically accurate man-
ner; i.e., the basic blocks in the instrumented code must be
executed proportionally to their execution frequency in the
non-instrumented code.

One approach for triggering samples is to use some type of
hardware or operating system timer interrupt. In our frame-
work, timer interrupts could be used to set a \trigger bit"
that is monitored by the checks in the checking code. This
approach | of checking a timer-set bit | is already being
used in Jalape~no JVM [2] to determine when an executing
method should yield to the thread scheduler.

One drawback of relying on a timer interrupt is that the
sample rate is limited by the frequency of the interrupt,
which may be a problem when sampling on the level of ba-
sic blocks and instructions. A more serious drawback is
that when used in our framework, this technique would not
produce a proper distribution of execution in instrumented
code. Our framework would not take a sample immediately
upon recieving the timer interrupt, but instead would jump
to instrumented code after the next check in the checking
code is reached. Any sequence of instructions that executes
for a long time (due to an I/O operation, etc) would have
a high probability of having a timer interrupt issued during
its execution, which, in turn, would cause the next sequence
of instructions to be sampled. Section 5 con�rms that this
improper attribution of samples, as well as the low sample
frequency, substantially reduce the accuracy of our frame-
work.

DCPI [4] describes a sampling system that uses interrupts
generated by the performance counters on the ALPHA pro-
cessor, allowing a very high sample rate (5200 samples/sec
on a 333-MHz processor). This technique could be encorpo-
rated into our framework by using the high frequency inter-
rupt to set the trigger bit that is monitored by the checking
code. However, similar to the timer-interrupt, this tech-
nique would improperly attribute samples in our framework.
Another drawback is that this technique requires hardware
performance counters that signal interrupts upon over
ow,
a feature not available on all architectures.

To obtain an accurate distribution of samples in our frame-
work, the number of times each check (in the checking code)
triggers a sample should be proportional to the number of
times that particular check is executed. Since we do not

eventCounter--;

if (eventCounter == 0) {

takeSample();

eventCounter = resetValue;

}

Figure 3: Code for a CBS check

know of a performance counter that counts backedges and
method entries, our framework simply performs the count-
ing in software, as described in the next section.

3.2 Compiler controlled counter-based sam-
pling

Counting a particular event and sampling when the counter
reaches a threshold (which we refer to as counter-based sam-
pling, or CBS for short) is an e�ective way of triggering sam-
ples proportionally to the frequence of that event, and is
the fundamental principle behind the accuracy of DCPI [4].
Their performance counters count instruction cycles, and
thus instructions are sampled proportionally to their exe-
cution frequency. However, it may be desirable to sample
events for which there is no counter-based interrupt avail-
able, as is likely the case with our framework, which needs to
count backedges and method entries. DCPI approximated
frequencies of non-counted events (intraprocedural edges)
using
ow constraints, and showed the accuracy to be infe-
rior to that of the accuracy of counted events.

To ensure accuracy, we propose implementing the trigger
mechanism in software; the compiler simply inserts code
that decrements and checks a counter, as shown in Fig-
ure 3. There are several options for implementing such an
approach; the simplest is to execute the code exactly as
shown in Figure 3 each time an event occurs. We call this
technique compiler inserted counter-based sampling. The
counter variable (eventCounter) will most likely be in a reg-
ister, or in the cache, and the branch will be predicted (not
taken), therefore the performance overhead should be fairly
low. We implemented such an approach in Jalape~no, placing
the code in Figure 3 on all backedges and method entries,
and the overhead averaged 5.94%. A detailed description of
the overhead is included in Section 5.

As long as the overhead of the counting and checking is
kept to a minimum, the advantages of compiler-controlled
counter-based sampling are numerous. First, it is extremely
simple to implement, and allows high frequency sample rates
that can be adjusted entirely in software, without relying
on any features of the hardware or operating system.2 A
more subtle advantage is that the CBS checks will trigger
samples deterministically, allowing sampling results to be
reproducable, which aids in debugging.

Certain architectures may even have instructions that can
aid in the eÆcient implementation of CBS checks. For ex-
ample, the powerPC architecture has a decrement-and-check
instruction that decrements a count register, compares it

2Although hardware and O.S. techniques may be used to
lower the overhead of the checks, no support from either is
required.

against zero, and performs a conditional branch { all in one
cycle,

I'm not really sure if this is true. I need
to check whether it really executes in one
cycle?

allowing the code in Figure 3 to be executed eÆciently on a
powerPC.

There may also be compiler speci�c techniques that could
furthur reduce the overhead of the checks. For example,
in Jalape~no, all backedges and method entries already con-
tain yield-points that check whether it's time for the exe-
cuting method to yield to the thread scheduler. The pow-
erPC decrement-and-check instruction described above can
be used to implement the semantics of both the CBS check
and the yield point check, without increasing the number of
instructions executed. Thus, the checks in our framework
could be added in Jalape~no without introducing any over-
head.3 Although this example is speci�c to Jalape~no, the
important point to be made is that the code needed to im-
plement CBS checks is simple enough to implement that,
by using any available hardware instructions and compiler-
speci�c tricks, it may be possible to implement CBS checks
with extremely low, or even no overhead.

4. SPACE SAVING VARIATIONS
The framework described in Section 3 uses two versions
(checking and instrumented) of each instrumented method,
and thus requires twice as much space. The instrumenta-
tion should not a�ect locality, since the instrumented code
is executed infrequently and can be placed somewhere out of
the common path; however, doubling the size of the method
will double the space consumed by the instrumented code,
and also increase compile time.4

In scenarios where instrumentation is sparse, ideally only
those nodes containing instrumentation would need to be
duplicated. However, it is not always possible to remove a
non-instrumented node from the instrumented code without
violating Invariant 1, as shown by Figure 4. When the non-
instrumented node is removed from the instrumented code,
an additional check must be added to allow the second in-
strumented node to be sampled.

The framework described in Section 3 will furthermore be
referred to as Variation-0. Below, two variations for reduc-
ing the space of Variation-0 are discussed. Variation-1 (Sec-
tion 4.1) identi�es non-instrumented basic blocks that can
be removed from the instrumened code without violating
Invariant 1. Variation-2 (Section 4.2) describes techniques
that modi�es the placement of the checks to reduce the space
requirements, but may violate Invariant 1.

4.1 Variation-1
3Some existing uses of the count register would need to be
modi�ed, which could potentially introduce overhead.
4Compile time will not be doubled. If the instrumenta-
tion is performed on optimized code, the \doubling" of all
nodes could be performed after optimization has taken place.
Moreover, instrumentation is likely to be performed in code
that is optimized at the highest level, thus doubling all nodes
would be a small compared to optimization time.

Figure 4: An example illustrating how removing
non-instrumented nodes from the instrumented ver-
sion can increase the number of checks executed
in the checking code. Dark nodes represent basic
blocks containing instrumentation. (A) represents
an instrumented version with all basic blocks dupli-
cated. (B) shows an instrumented version where the
non-instrumented node is not duplicated in the in-
strumented code. Note the extra check (diamond)
in the checking version of (B).

Variation-1 simply removes as many non-instrumented ba-
sic blocks as possible from the instrumented code without
violating Invariant 1. Two types of nodes in the instru-
mented code are de�ned: top-nodes and bottom-nodes, both
of which can be removed from the instrumented code with-
out invalidating Invariant 1. Both types of nodes are de�ned
on the instrumented code DAG, which is the instrumented
code with all backedges removed.

A bottom-node is de�ned to be any non-instrumented node,
n, in the instrumented code DAG such that no instrumented
nodes are reachable from n.

All bottom-nodes can be removed from the instrumented
code without violating Invariant 1, because once n is exe-
cuted, no furthur instrumentation will be performed without
returning to the checking code �rst. Any edge in the instru-
mented code that previously connected a non-bottom-node
to a bottom-node is simply adjusted to branch to the corre-
sponding node in the checking code.

A top-node is de�ned to be any non-instrumented node, n,
in the instrumented code DAG such that no path from en-
try to n contains an instrumented node. All top-nodes can
be removed from the instrumented code without violating
Invariant 1; however, some adjustments must be made to
the checks in the checking code, because they may have pre-
viously pointed to top-nodes that are being removed. The
adjustment is as follows.

1. In the checking code, all checks that branch to a top-
node should be removed.

2. In the instrumented code, for every edge that previ-
ously connected a top-node to a non-top-node, the
corresponding edge in the checking code should have
a check added.

This technique eliminates as many nodes as is possible with-
out violating Invariant 1. Although the static number of
checks may increase, the number of checks executed is the
same as Variation-0, and instrumentation in an identical
manner to Variation-0. A proof of correctness is available
in [7].

4.2 Variation-2
If Invariant 1 can be violated, there are many other alterna-
tives for reducing code duplication. In fact, by guarding all
instrumentation operations with checks, there is no need to
duplicate any code. Such an approach will be referred to as
Variation-2. Although none of the instructions themselves
are duplicated, all instructions with associated instrumenta-
tion must check the sample condition before executing the
instrumentation.

Unlike Variation-1, Variation-2 will not perform instrumen-
tation identical to Variation-0. With Variation-0, a sam-
ple causes execution in that method to remain in instru-
mented code until the next backedge is reached, whereas
in Variation-2, a sample triggers only one instrumentation
operation to be performed. Although they perform the in-
strumentation in a slightly di�erent manner, they both ex-
ecute the instrumented instructions proportionally to their
execution frequency, resulting in accurate sampling results,
as demonstrated empirically in Section 5.

The only drawback of Variation-2 is that it may execute
more checks at runtime than the previous variations. This
overhead for executing the additional checks introduced by
this technique may be signi�cant if there are a substan-
tial number of instrumentation operations per loop itera-
tion. However, the number of checks executed could also be
reduced if instrumentation operations occur less frequently
than backedges and method calls. In any case, the overhead
is likely to be less than the overhead of full instrumentation
(as shown in Section 5), making Variation-2 useful in situa-
tions where a reduction in space is important. Variation-2
is also the easiest to implement since it involves no code
duplication.

Combining Variation-1 and Variation-2 is also a possibil-
ity, allowing some code to be duplicated, while executing
some additional checks at runtime. Exactly which approach
should be used (Variation-0, Variation-1, Variation-2, or a
combination thereof) depends on the type of instrumenta-
tion being performed, and the time and space constraints
that must be satis�ed. A reasonable approach for an adap-
tive system would be to �ll the instrumented version with
every type of instrumentation it knows how to perform, and
let it run for a while at a low sample rate. Variation-0 would
probably be the best choice for this scenario, since most of
the basic blocks would contain instrumentation.

5. EXPERIMENTAL RESULTS
To assess the feasibility of using our framework in an adap-
tive JVM, we performed experiments to measure both the
runtime overhead and the accuracy of the technique when
applied to two example instrumentations.

5.1 Methodology

Our experimentation was performed using the Jalape~no
JVM [2, 5] being developed at IBM T.J. Watson Research.
Currently Jalape~no contains two fully operational compilers,
a nonoptimizing baseline compiler and an optimizing com-
piler [13]. Jalape~no is written in Java, and begins execution
by reading from a boot image �le, which contains the core
services of Jalape~no precompiled to machine code.

Our benchmark suite consists of the SPECjvm98 benchmark
suite with input size 10. The running times of the bench-
marks ranged from 1.1 to 4.2 seconds. Overhead numbers
were collected using the minimum of 10 runs to eliminate
noise; however, the instrumentated pro�les used for accu-
racy comparisons were collected using a single run. Bench-
marks with short running times were chosen speci�cally to
show that our framework can collect accurate pro�les in a
short amount of time. The benchmarks range in cumulative
class �le sizes from 10,156 (209 db) to 1,516,932 (opt-cmp)
bytes. All results were gathered on a 333MHz IBM RS/6000
PowerPC 604e with 1048MB RAM, running AIX 4.3.

Our sampling framework is evaluated using the following
two examples of instrumentation:

1. Call edge instrumentation All calls are instru-
mented to record the call edge, which consists of the
caller method, the callee method, and the call-site
within the caller method (speci�ed by a bytecode o�-
set). A counter is maintained for each call edge, and
the counter is incremented on each call.

2. Field access instrumentation5 A counter is main-
tained for each �eld of all classes. All �eld accesses
(generated from a get �eld or put �eld bytecode in-
struction) are instrumented to increment the counter
for the �eld they are accessing. This type of pro�le is
useful for cache concious data layout [15, 16, 19].

All overhead and accuracy data reported (both exhaustive
and sampled) were collected by instrumenting all methods in
the benchmark, including library methods, however meth-
ods in the Jalape~no boot-image were not instrumented. An
adaptive JVM would most likely instrument just a few of
the hottest methods, so instrumenting all methods repre-
sents a worst case scenario regarding overhead. All code
(both instrumented and non-instrumented) was optimized
pre-execution at level \O2", which is currently Jalape~no's
highest optimization level.

5.2 Results
Table 1 characterizes the two pro�ling techniques used in
this study by showing their overhead when applied exhaus-
tively (not using our framework, where all methods spend
100% of the time in the instrumented code). The �rst
column lists the benchmarks, while the second and third
columns show the overhead of exhaustive instrumentation
for call-edge and �eld-access instrumentation respectively.
The call edge instrumentation averages 82.8% overhead, and

5We would like to thank Sharad Singhai and Peter Sweeney
from IBM Research for the use of their �eld access pro�ling
implementation.

Benchmark Call edge Field accesse

201 compress 77.1 286.5
202 jess 140.7 90.2
209 db 4.5 15.3
213 javac 75.3 15.4
222 mpegaudio 132.5 59.2
227 mtrt 121.6 76.4
228 jack 28.3 113.2
opt-compiler
pBOB
Volano

Geom. Mean 82.8 94.1

Table 1: Percent overhead of exhaustive instru-
mentation (100% of time in instrumented code, no
checking code)

the �eld access averages 94.1% overhead. Clearly, these in-
strumentations are too expensive to execute unnoticed at
runtime.

Next, the overhead of the checking code was computed by
comparing the running time of the checking code only (the
trigger is permanently false, so execution never moves into
the instrumented code) to the running time of the origi-
nal code, thus capturing the overhead of the checks. A full
breakdown of the checking overhead is shown in Table 2.
Column 1 lists the benchmarks, and columns 2{4 show the
overhead when using Variation-0 or Variation-1.6 The col-
umn labeled \Both" shows the overhead when the checks
are inserted on both backedges and method entries, there-
fore representing the total cost of the checking code. The
average combined overhead is 5.94%, which is very low com-
pared to the cost of the full instrumentation. The columns
labeled \Backedges" and \Method entries" provide furthur
insight into the cost of the checking code by reporting a
breakdown of the overhead when checks are placed only on
backedges or method entries, respectively.

These measurements were obtained without using any of
the powerPC or Jalape~no speci�c techniques mentioned in
Section 3.2, so these numbers act as a \worst case" over-
head for a naive implementation. The natural development
of Jalape~no should also lower the overhead of the checks.
Jalape~no currently does not perform loop unrolling, which
would lower the cost of backedge checks. Secondly, the tim-
ings were collected using the default static inlining heuris-
tics. Performing instrumentation after more aggressive in-
lining has taken place7 could substantially reduce the num-
ber of method calls, further reducing checking overhead.

The last two columns of Table 2 show the overhead of the
checking code when using Variation-2, for both call edge and
�eld access instrumentations. Recall that Variation-2 does
not guarantee to maintain Invariant 1, and thus the over-
head in the checking code may be higher, or lower, than the

6Recall that the overhead of the checking code is the same
for both Variation-0 and Variation-1.
7which is not an unreasonable thing to do, as an adaptive
system would likely resort to expensive instrumentation only
after all the simpler optimizations are applied.

Variations 0 & 1 Variation-2
Benchmark Both Backedges Method entry Call edges Field accesses Space Reduction (K)

201 compress 11.20 9.36 5.62 5.62 101.9
202 jess 5.65 4.32 5.23 5.23 31.8
209 db 1.29 1.65 1.10 1.10 4.2
213 javac 1.97 1.22 4.51 4.51 3.2
222 mpegaudio 10.28 7.40 3.94 3.94 22.8
227 mtrt 5.83 0.73 5.00 5.00 59.0
228 jack 5.40 3.20 3.30 3.30 29.3
opt-compiler
pBOB
Volano

Geom. Mean 5.94 3.98 4.10 4.10 36.0

Table 2: Overhead of the checking code reported as a percentage (execution never leaves checking code {
overhead is for the checks only).

checking overhead of Variation-0. For the call edge instru-
mentation, the average overhead is 3.98% { less than the
checking overhead of Variation-0. This is because for the
call-edge instrumentation, Variation-2 performs checks on
all call edges (i.e., method entries), explaining why columns
4 and 5 are identical. However, the average overhead of
the �eld access instrumentation is 36.0%. Although this
is less than the overhead of the exhaustive �eld access in-
strumentation, it is signi�cantly higher than the overhead
for Variation-0. The Variation-2 overhead would increase if
more instrumentation were added to the instrumented code
(whereas the overhead of Variation-0 would not).

Here we mention an advantage of
Variation-2 and show how it can save
space, and referencing the last column
of 2.

5.2.1 Instrumentation overhead and accuracy
The overhead and accuracy of the actual instrumentation
(as opposed to just the checking code) is evaluated when
sampled by our framework. We implemented Variation-2
and a prototype \simulated" version of Variation-0. The
simulated version of Variation-0 does not actually duplicate
the code as described in Section 3. Instead the checking code
turns on an \instrumenting"
ag that is checked by all in-
strumentation operations. A separate
ag is maintained for
each method, to properly simulate the actions of Variation-0.
This technique produces instrumentation results identical to
Variation-0, but at the cost of increased checking overhead.8

To compute the overhead of the sampled instrumentation,
the running time of the sampling version is compared to
the running time of the checking code only (where no sam-
ples are triggered). The performance di�erence represents
the time spent performing sampled instrumentation, not in-
cluding the overhead of the checks.

8This simulated version may cause the overhead numbers to
be inaccurate to a certain degree, but this is of very little
signi�cance because the overhead drops close to zero very
quickly for both Variation-0 and Variation-2. More impor-
tantly, the accuracy results are identical to those that would
be obtained by a true implementation of Variation-0.

To assess accuracy, pro�les collected at di�erent sample
rates are compared against a perfect pro�le (which is col-
lected by allowing 100% of the execution to remain in in-
strumented code) and an accuracy metric is computed. An
overlap metric is used, similar to that used in [23]. Infor-
mally, the overlap of two pro�les represents the percent of
pro�led information, weighted by execution frequency, that
exists in both pro�les. The following example de�nes more
speci�cally how the metric is computed for call edges and
�eld accesses.

Figure 5 helps describe the overlap metric by visually repre-
senting the call-edge pro�le for the javac. Each bar repre-
sents a call edge, and the y-axis represents the \hotness" of
the edge, where an edge's hotness is de�ned as the percent-
age of all samples that were attributed to that edge. The
height of each bar is the hotness of the edge according to the
perfect pro�le, while each circle (either within or above each
bar) shows the hotness of that edge according to a sampled
pro�le. The overlap for each edge is simply the minimum of
the two hotness values. The total overlap of the benchmark
is the sum of the overlaps for all edges. Identical pro�les
yield an overlap of 100%, while any variation from perfect
will produce an overlap of less than 100%. Overlap for the
�eld access pro�le was computed in the same way, but using
�eld hotness rather than call edge hotness. The javac pro-
�le shown in Figure 5 yeilds an overlap of 93.8%, showing
that an overlap in the mid to low 90's is still very accurate.

Table 3 shows the overhead and accuracy of the sampled in-
strumentation, averaged over all benchmarks for several dif-
ferent sample rates. Because samples are driven by counter-
based sampling, the sample rate is given as a sample inter-
val. The sample interval represents the number of checks (in
the checking code) that are executed before each sample is
triggered. Therefore a sample interval of 1000 means that
roughly 1=1000th of the execution will occur in instrumented
code. The �rst column of Table 3 shows the sample interval.
The next four columns show data for call-edge pro�ling, and
the last four show data for �eld access pro�ling. Each pro-
�ling type contains a breakdown of the overhead for both
Variation-0 and Variation-2.

As would be expected, increasing the sample interval re-

Call Edge Field Accesses
Variation-0 Variation-2 Variation-0 Variation-2

Sample Interval Overhead Accuracy Overhead Accuracy Overhead Accuracy Overhead Accuracy

1 89.03 100 108.90 100 80.12 100 77.32 100
10 8.10 99 11.24 99 8.22 100 7.80 99
100 0.72 99 1.33 98 0.91 99 0.75 99

1,000 0.05 95 0.18 97 0.05 98 0.14 98
10,000 0.07 89 0.07 89 0.03 96 0.01 95
100,000 0.03 62 0.09 67 0.04 85 0.03 84

Table 3: Sampled Instrumentation { Overhead and Accuracy. Accuracy is reported as an \overlap percent-
age", as described in the text. Overhead is reported as percent overhead, not includeing checking overhead.

0 10 20 30 40 50

Call edges

0.00

0.02

0.04

0.06

H
ot

tn
es

s

Perfect profile
Sampled profile

Figure 5: A graphical representation of the javac

call-edge pro�le, illustrating the overlap accuracy
metric.

duces the overhead, and also reduces the accuracy. At sam-
ple interval 1,000 there is practically no overhead (for the
instrumentation, excluding checking overhead), and the ac-
curacy is still very near 100% for both instrumentation types
and both variations. Even at sample interval 10,000, the
accuracy is good, even though only 1=10; 000th of the exe-
cution is spent in instrumented code. The accuracy �nally
degrades at sample interval 100,000 where there are simply
not enough samples collected given the short running time
of the benchmarks. When observing this table, keep in mind
that the sample intervals are increasing exponentially, and
that there is actually a huge range of sample intervals (any-
where from 100 to 10,000) that o�er extremely high accuracy
with almost no overhead.

5.2.2 Trigger Mechanisms
As discussed in Section 3.1, it is possible to use triggers other
than a counter-based trigger. To show the advantages of the
counter-based trigger, we compared its accuracy against a
time-based trigger. Jalape~no has a threadswitch bit that is
set every 10ms by a hardware interrupt, and is used to de-
termine when the executing code should yield to the thread

Benchmark Time-based Counter-based

201 compress 89 99
202 jess 88 94
209 db 51 94
213 javac 66 72
222 mpegaudio 73 94
227 mtrt 83 78
228 jack 85 91
opt-compiler
pBOB
Volano

Geom. Mean 76 89

Table 4: Accuracy of a counter-based trigger vs. a
time-based trigger for �eld access instrumentation.

scheduler. We used this threadswitch bit to also trigger a
sample, using Variation-0 for the �eld-access instrumenta-
tion. To make a fair comparison, we used a sample interval
of 30,000 for the counter-based sampling, because it results
in approximately the same number of samples as the time-
based trigger for these benchmarks.

Figure 4 compares the accuracy of both techniques for all
benchmarks. Clearly, counter-based sampling is more accu-
rate, averaging 89.7% accuracy, as opposed to time-based
sampling, which averaged 74.8%. This is most likely due
to the time-based trigger's inaccurate attribution of sam-
ples, as discussed in Section 3.1. Another advantage of the
counter-based trigger is that it allows the sample interval
to be increased. As previously shown in Table 3, a faster
sample interval of 100 achieves a much higher accuracy (98{
99%), while overhead remains at near zero. The time-based
technique, however, does not allow the sample interval to
be increased, because it is limited by the frequency of the
hardware interrupt.

6. RELATED WORK
We do not know of any framework based on sampling de-
signed to allow general instrumentation to be performed at
low overhead. Previous work [15, 23, 30]

Update the TR reference to the journal
version

has used the idea of wrapping each instrumentation opera-
tion inside a conditional branch (as is done in our \Variation-

2") to allow the instrumentation to be turned on and o�.
However, unlike our work, none of these approaches use the
conditional checking to perform �ne-grained sampling; in-
stead, the conditional was used as a switch to turn exhaus-
tive pro�ling on and o� for a given period of time. [15, 23]
describe convergent value pro�ling, where pro�ling is turned
o� once the pro�led values appear to have converged; their
technique is compared against a random sampling, where
(exhaustive) sampling is turned o� for periods of random
length.

Viswanthan et al. [30] describes a Java virtual machine pro-
�ler interface (JVMPI), which also wraps instrumentation
operations inside a conditional branch to turn exhaustive
instrumentation on and o�. JVMPI is a general purpose
mechanism for obtaining information from a JVM, support-
ing both sampling and instrumentation, but not combining
the two. Another di�erence from our work is that JVMPI is
designed to provide feedback to a programmer, as opposed to
providing feedback to an adaptive system; the �nest grained
pro�ling supported by the interface is at the method level
(excluding basic block pro�ling, etc). The overhead of the
checks using all of these these approachs ([15, 23, 30]) will
increase as more instrumentation is added; this is not the
case with our \Variation-0".

Previous systems have counted the frequency of events to
determine when optimization should occur. Self-93 [26]
compares method counters against a threshold to determine
when a method should be optimized. Dynamo [10] uses
counters on start-of-trace points to determine when a trace
should be optimized. There are several fundamental dif-
ferences between these uses of counters and our counter-
based sampling. First, these approaches use multiple coun-
ters (Self-93 uses one per method, Dynamo uses one per
trace) to count the frequency of events, whereas our counter-
based sampling uses one counter to distribute samples in
a statistically relavant manner. Second, when a counter
reaches a threshold in their systems, the current state is
observed,9 and optimization takes place based on this ob-
servation. Thus, their optimization decisions are essentially
based on a sample set of size one, whereas with our ap-
proach, many samples can be collected over a long period of
time before action is taken. Lastly, none of these approaches
solved the problem of providing a general framework to al-
low general instrumentation to be performed eÆciently.

There has been work in reducing the cost of speci�c types
of instrumentation [11, 14, 23] but these techniques do not
use sampling. Although these techniques reduce the over-
head of instrumentation, they most likely do not reduce the
overhead enough to allow it to run unnoticed in an adaptive
system.

Recent work [8, 31] has used sampling to reduce the cost
of building the calling context tree [11]. Their techniques
are an example of the general technique proposed by our
framework, i.e., using sampling to collect pro�ling informa-
tion that is traditionally collected by exhaustive instrumen-
tation.

9Self-93 observes the call stack; Dynamo observes the next
trace that executes.

Morph [33], and DCPI [4] use low overhead sampling to col-
lect information about a program at runtime, however they
do not address the problem of allowing general instrumen-
tation to be performed.

Aron et al. [9] describes soft timers, an operating system fa-
cility that allows the eÆcient scheduling of software events
at a granularity down to tens of microseconds; however, the
goal of soft timers is somewhat orthogonal to our counter-
based sampling. The goal of counter-based sampling is to
trigger high frequency samples on a regular basis to achieve
a statistically accurate sampling, whereas the goal of soft
timers is to process high frequency events with low overhead
by strategically scheduling them at strategic times when
overhead will be minimized.

7. CONCLUSIONS
We have presented a tunable framework for instrumenting
code that allows expensive instrumentation to be performed
with extremely low overhead, averaging �6% in our expe-
rience. Our framework uses compiler controlled counter-
based sampling to switch between instrumented and non-
instrumented code in a controlled, �ne-grained manner. Our
sampling techniques does not rely on any hardware or oper-
ating system support, yet allows a high enough sample rate
to achieve accurate sampling results.

The reduction in overhead provided by our sampling frame-
work allows instrumentation to be performed for a longer
period of time at runtime, while causing only minimal per-
formance degredation, allowing a system to utilize expensive
instrumentation techniques even without the ability to do
stack frame rewriting. Because total overhead is controlled
completely by the framework, implementors of instrumen-
tation techniques are no longer required to concentrate on
minimizing overhead, but instead can concentrate on devel-
oping new techniques quickely and correctly. Our framework
also makes it possible for multiple types of instrumentation
to be combined together at once, without the normal con-
cern for overhead. This is a very attractive approach for an
adaptive JVM, as it would allow several forms of instrumen-
tation to be performed at the same time while requiring the
method to be recompiled only once.

We have shown experimentally, using two di�erent types
of instrumentation, that our technique can achieve excellent
accuracy (achieving a 98{99% overlap with a perfect pro�le)
with very low overhead (averaging �6% with a very naive
implementation).

8. REFERENCES
[1] A.-R. Adl-Tabatabai, M. Cierniak, C.-Y. Lueh, V. M.

Parikh, and J. M. Stichnoth. Fast, e�ective code
generation in a Just-in-Time Java compiler. In
Proceedings of the ACM SIGPLAN'98 Conference on
Programming Language Design and Implementation
(PLDI), pages 280{290, Montreal, Canada,
17{19 June 1998. SIGPLAN Notices 33(5), May 1998.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J.
Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalape~no virtual
machine. IBM Systems Journal, 39(1), 2000.

[3] G. Ammons, T. Ball, and J. Larus. Exploiting
hardware performance counters with
ow and context
sensitive pro�ling. In SIGPLAN '97 Conf. on
Programming Language Design and Implementation,
1997.

[4] J. M. Andersen, L. M. Berc, J. Dean, S. Ghemawat,
M. R. Henzinger, S.-T. A. Leung, R. L. Sites, M. T.
Vandevoorde, C. A. Waldspurger, and W. E. Weihl.
Continuous pro�ling: Where have all the cycles gone?
Technical Note 1997-016a, Digital Systems Research
Center, www.research.digital.com/SRC, Sept. 1997.

[5] M. Arnold, D. Grove, M. Hind, S. Fink, and
P. Sweeney. Adaptive optimization in the Jalape~no
JVM. In ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications,
Oct. 2000.

[6] M. Arnold, M. Hind, and B. G. Ryder. An empirical
study of selective optimization. In 13th International
Workshop on Languages and Compilers for Parallel
Computing, Aug. 2000.

[7] M. Arnold and B. G. Ryder. A framework for
reducing the cost of instrumented code. Technical
Report In preparation, Rutgers University.

[8] M. Arnold and P. F. Sweeney. Approximating the
calling context tree via sampling. Technical Report RC
21789, IBM T.J. Watson Research Center, July 2000.

[9] M. Aron and P. Druschel. Soft timers: eÆcient
microsecond software timer support for network
processing. In In Proceedings of the 17th ACM
Symposium on Operating Systems Principles
(SOSP'99), pages 232{246, 1999.

[10] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A
transparent dynamic optimization system. In
SIGPLAN 2000 Conference on Programming
Language Design and Implementation, June 2000.

[11] T. Ball and J. R. Larus. Optimally pro�ling and
tracing programs. ACM Transactions on Programming
Languages and Systems, 16(4):1319{1360, July 1994.

[12] T. Ball and J. R. Larus. EÆcient path pro�ling. In
Proceedings of the 29th Annual International
Symposium on Microarchitecture, pages 46{57. ACM
Press, 1996.

[13] M. G. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind,
V. Sarkar, M. J. Serrano, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalape~no dynamic
optimizing compiler for Java. In ACM 1999 Java
Grande Conference, pages 129{141, June 1999.

[14] B. Calder, P. Feller, and A. Eustace. Value pro�ling.
In the 30th International Symposium on
Microarchitecture, pages 259{269, Dec. 1997.

[15] B. Calder, P. Feller, and A. Eustace. Value pro�ling
and optimization. Technical Report CS98-592, UCSD,
July 1998.

[16] B. Calder, C. Krintz, S. John, and T. Austin.
Cache-conscious data placement. In Proceedings of the
Eighth International Conference on Architectural
Support for Programming Languages and Operating
Systems, San Jose, California.

[17] C. Chambers and D. Ungar. Making pure
object-oriented languages practical. In ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 1{15, Nov. 1991.
SIGPLAN Notices 26(11).

[18] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. mei
W. Hwu. Pro�le-guided automatic inline expansion for
C programs. Software { Practice and Experience,
22(5):349{369, May 1992.

[19] T. M. Chilimbi, B. Davidson, and J. R. Larus.
Cache-conscious structure de�nition. In Proceedings of
SIGPLAN'99 Conference on Programming Languages
Design and Implementation, ACM SIGPLAN Notices,
pages 13{24, Atlanta, May 1999. ACM Press.

[20] T. M. Chilimbi and J. R. Larus. Using generational
garbage collection to implement cache-conscious data
placement. In Proceedings of the International
Symposium on Memory Management (ISMM-98),
volume 34, 3 of ACM SIGPLAN Notices, pages 37{48,
New York, Oct. 17{19 1999. ACM Press.

[21] M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth.
Practicing JUDO: Java Under Dynamic
Optimizations. In SIGPLAN 2000 Conference on
Programming Language Design and Implementation,
June 2000.

[22] L. P. Deutsch and A. M. Schi�man. EÆcient
implementation of the Smalltalk-80 system. In 11th
Annual ACM Symposium on the Principles of
Programming Languages, pages 297{302, Jan. 1984.

[23] P. T. Feller. Value pro�ling for instructions and
memory locations. Masters Thesis CS98-581,
University of California, San Diego, Apr. 1998.

[24] D. Grove, J. Dean, C. Garrett, and C. Chambers.
Pro�le-guided receiver class prediction. In ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 108{123, Oct.
1995.

[25] U. H�olzle, C. Chambers, and D. Ungar. Debugging
optimized code with dynamic deoptimization. In
Proceedings of the ACM SIGPLAN'92 Conference on
Programming Language Design and Implementation
(PLDI), pages 32{43, San Francisco, California,
17{19 June 1992. SIGPLAN Notices 27(7), July 1992.

[26] U. H�olzle and D. Ungar. Reconciling responsiveness
with performance in pure object-oriented languages.
ACM Transactions on Programming Languages and
Systems, 18(4):355{400, July 1996.

[27] The Java Hotspot performance engine architecture.
White paper available at
http://java.sun.com/products/hotspot/whitepaper.html,
Apr. 1999.

[28] A. Krall. EÆcient JavaVM Just-in-Time compilation.
In J.-L. Gaudiot, editor, International Conference on
Parallel Architectures and Compilation Techniques,
pages 205{212, Oct. 1998.

[29] T. Suganama, T. Ogasawara, M. Takeuchi, T. Yasue,
M. Kawahito, K. Ishizaki, H. Komatsu, and
T. Nakatani. Overview of the IBM Java Just-in-Time
compiler. IBM Systems Journal, 39(1), 2000.

[30] D. Viswanathan and S. Liang. Java Virtual Machine
Pro�ler Interface. IBM Systems Journal, 39(1):82{95,
2000.

[31] J. Whaley. A portable sampling-based pro�ler for Java
virtual machines. In ACM 2000 Java Grande
Conference, June 2000.

[32] B.-S. Yang, S.-M. Moon, S. Park, J. Lee, S. Lee,
J. Park, Y. C. Chung, S. Kim, K. Ebcioglu, and
E. Altman. LaTTe: A Java VM Just-in-Time compiler
with fast and eÆcient register allocation. In
International Conference on Parallel Architectures and
Compilation Techniques, Oct. 1999.

[33] X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and M. D.
Smith. System support for automated pro�ling and
optimization. In Proceedings of the 16th Symposium on
Operating Systems Principles (SOSP-97), Operating
Systems Review, 31(5), pages 15{26, Oct. 5{8 1997.

