
1

MachineIndepOpt-1, Sp06 © BGRyder 1

Machine Independent CompilerMachine Independent Compiler
OptimizationOptimization

• What is classical machine independent
optimization?

• Control flow graph, basic blocks, local opts
• Control flow abstractions: loops, dominators
• Four classical dataflow problems

– Reaching definitions
– Live variables
– Available expressions
– Very busy expressions

MachineIndepOpt-1, Sp06 © BGRyder 2

Phases of CompilationPhases of Compilation

source
code

intermediate
code

assembly
language

scanner parser code generator

optimizer

tokens

intermediate
code

Optimization is a semantics-preserving transformation

2

MachineIndepOpt-1, Sp06 © BGRyder 3

ExampleExample

• To define classical optimizations using an
example loop from Fortran scientific code

• Opportunities for these optimizations result
from table-driven code generation
 …
 sum = 0
 do 10 i = 1, n

10 sum = sum + a(i) * a(i)
 …

MachineIndepOpt-1, Sp06 © BGRyder 4

Three Address CodeThree Address Code
1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i * 4
9. t6 = t4[t5]
10. t7 = t3 * t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15.

sum = 0; initialize loop counter
loop test, check for limit

a[i]

a[i]

a[i] * a[i]
increment sum
increment loop counter

3

MachineIndepOpt-1, Sp06 © BGRyder 5

Control Flow Graph (CFG)Control Flow Graph (CFG)
1. sum = 0
2. i = 1

4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i * 4
9. t6 = t4[t5]
10. t7 = t3 * t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3

3. if i > n goto 15 15.T

F

MachineIndepOpt-1, Sp06 © BGRyder 6

Local Common Local Common SubexpressionSubexpression
Elimination (CSE)Elimination (CSE)

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i * 4
9. t6 = t4[t5]
10. t7 = t3 * t6
10a t7 = t3 * t3
11. t8 = sum + t7
11a sum = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15.

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i * 4
9. t6 = t4[t5]
10. t7 = t3 * t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15. Blue code eliminated;

Red code added

4

MachineIndepOpt-1, Sp06 © BGRyder 7

Invariant Code MotionInvariant Code Motion
1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
10a t7 = t3 * t3
11a sum = sum + t7
13. i = i + 1
14. goto 3
15.

1. sum = 0
2. i = 1
2a t1 = addr(a) - 4
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
10a t7 = t3 * t3
11a sum = sum + t7
13. i = i + 1
14. goto 3
15.

MachineIndepOpt-1, Sp06 © BGRyder 8

Reduction in StrengthReduction in Strength
1. sum = 0
2. i = 1
2a t1 = addr(a) - 4
3. if i > n goto 15
5. t2 = i * 4
6. t3 = t1[t2]
10a t7 = t3 * t3
11a sum = sum + t7
13. i = i + 1
14. goto 3
15.

1. sum = 0
2. i = 1
2a t1 = addr(a) - 4
2b t2 = i * 4
3. if i > n goto 15
5. t2 = i * 4
6. t3 = t1[t2]
10a t7 = t3 * t3
11a sum = sum + t7
11b t2 = t2 + 4
13. i = i + 1
14. goto 3
15.

5

MachineIndepOpt-1, Sp06 © BGRyder 9

Test Elision and Induction VariableTest Elision and Induction Variable
EliminationElimination

1. sum = 0
2. i = 1
2a t1 = addr(a) - 4
2b t2 = i * 4
3. if i > n goto 15
6. t3 = t1[t2]
10a t7 = t3 * t3
11a sum = sum + t7
11b t2 = t2 + 4
13. i = i + 1
14. goto 3
15

1. sum = 0
2. i = 1
2a t1 = addr(a) - 4
2b t2 = i * 4
2c t9 = 4 * n
3. if i > n goto 15
3a if t2 > t9 goto 15
6. t3 = t1[t2]
10a t7 = t3 * t3
11a sum = sum + t7
11b t2 = t2 + 4
13. i = i + 1
14. goto 3a
15

MachineIndepOpt-1, Sp06 © BGRyder 10

Constant Propagation and Dead CodeConstant Propagation and Dead Code
EliminationElimination

1. sum = 0
2. i = 1
2a t1 = addr(a) - 4
2b t2 = i * 4
2c t9 = 4 * n
3a if t2 > t9 goto 15
6. t3 = t1[t2]
10a t7 = t3 * t3
11a sum = sum + t7
11b t2 = t2 + 4
14. goto 3a
15

1. sum = 0
2. i = 1
2a t1 = addr(a) - 4
2b t2 = i * 4
2d t2 = 4
2c t9 = 4 * n
3a if t2 > t9 goto 15
6. t3 = t1[t2]
10a t7 = t3 * t3
11a sum = sum + t7
11b t2 = t2 + 4
14. goto 3a
15

6

MachineIndepOpt-1, Sp06 © BGRyder 11

New Control Flow GraphNew Control Flow Graph

6. t3 = t1[t2]
7. t7 = t3 * t3
8. sum = sum + t7
9. t2 = t2 + 4
10. goto 5

1. sum = 0
2. t1 = addr[a] - 4
3. t2 = 4
4. t9 = 4 * n

5. if t2 > t9 goto 11 11.
F T

MachineIndepOpt-1, Sp06 © BGRyder 12

How to build CFG?How to build CFG?
• Need to find basic blocks and possible branches

between them
• Basic block leader statements

– First program statement
– Targets of conditional or unconditional goto’s
– Any statement following a conditional goto

• For each leader s, construct basic block Bs as all
statements t reachable from s through straight-line
code

• Eventually, any statements not included in some
basic block are unreachable from program entry
dead code

7

MachineIndepOpt-1, Sp06 © BGRyder 13

Leader StatementsLeader Statements
1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i * 4
9. t6 = t4[t5]
10. t7 = t3 * t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15.

first program statement

conditional goto statement
statement following
conditional goto

branch
target

MachineIndepOpt-1, Sp06 © BGRyder 14

Local CSELocal CSE

• Accomplished while translating into three address
code

• For each statement, form expression DAGs (for
operand sharing)
– Operands are children of operator nodes
– Operand nodes can be used by more than one operator

node
– Intermediate results that must be stored cause creation of

compiler temporaries
– Multiple labels on same node mean CSE

8

MachineIndepOpt-1, Sp06 © BGRyder 15

Expression DAG constructionExpression DAG construction

t1 = addr[a]-4
t2 = i * 4
t3 = t1[t2]

addr[a]

-, t1 *, t2

= [], t3

4i

MachineIndepOpt-1, Sp06 © BGRyder 16

Expression DAG constructionExpression DAG construction
+,t8,sum

+,i

*, t7

-, t1,t4 *, t2,t5

= [],t3,t6

i0 4

sum0

addr[a]
1

t1 = addr[a]-4
t2 = i * 4
t3 = t1[t2]
t4 = addr[a]-4
t5 = i * 4
t6 = t4 [t5]
t7 = t3 * t6
t8 = sum + t7
sum = t8
i = i + 1

9

MachineIndepOpt-1, Sp06 © BGRyder 17

DAG constructionDAG construction

• How to add a subexpression into a partially
constructed DAG? A = B + C

• Is there a node already for B + C?
– If so, add A to its list of labels
– If not,

• Is there a node labeled B already? If not, create a leaf
labeled B

• Is there a node labeled C already? If not, create a leaf
labeled C

– Create a node labeled A for + with left child B
and right child C

MachineIndepOpt-1, Sp06 © BGRyder 18

Flow of Control AbstractionsFlow of Control Abstractions
• Dominator A node x dominates a node y if and only

if all paths from the control flow graph (CFG) entry
node to y pass through x.

• (Natural) Loop Let (y,x) be a CFG edge such that x
dominates y. Then all nodes on paths from x to y are
in the loop defined by (y,x).
– (y,x) is called a back edge
– For reducible graphs, the set of back edges is unique
– CFG is reducible if each loop can be entered through a

single node
– Irreducible means contains a subgraph A

B C

10

MachineIndepOpt-1, Sp06 © BGRyder 19

LoopsLoops
1

2

3

4 5

6

CFG

Back edges: (5,3), (4,3), (6,2)
Loop (5,3) = {3, 4, 5}
Loop (4,3) = {3, 4}
Loop (6,2) = {2, 3, 4, 5, 6}

combined

MachineIndepOpt-1, Sp06 © BGRyder 20

General Step in Strength ReductionGeneral Step in Strength Reduction

i = 1

i < n?exit

s := x ** i
...
i := i + 1

i := 1
xtemp := x ** 1

i < n?exit

s := xtemp
...
xtemp := xtemp * x
i := i + 1transforms an repeated expensive

operation into a less expensive one

11

MachineIndepOpt-1, Sp06 © BGRyder 21

General Code MotionGeneral Code Motion

n := 1; k := 0; m := 3; read x;
while n ≤ 10 do
 if 2 + x < 5 then k := 5;

 if 3 + k = 3 then m := m + 2;
 n := n + k + m;
endwhile;

definitions within loop are barriers to code motion

MachineIndepOpt-1, Sp06 © BGRyder 22

General Code MotionGeneral Code Motion

n := 1; k := 0; m := 3; read x;
if 2 + x < 5 then k := 5;//move first
t1 := 3 + k = 3 //move second
while n ≤ 10 do
 if 2 + x < 5 then k := 5;

 if 3 + k = 3 then m := m + 2;
 if t1 then m := m + 2;
 n := n + k + m;
endwhile; Why can’t we move any

more code out of the loop?

12

MachineIndepOpt-1, Sp06 © BGRyder 23

Program AnalysisProgram Analysis

• Performed at compile-time, deriving
something about semantics of program

• Termed flow analysis
– Control flow analysis reveals possible execution

paths
• Cannot tell actual feasibility of path. Why not?

– Dataflow analysis determines information about
modification, preservation, and use of data
entities in a program

MachineIndepOpt-1, Sp06 © BGRyder 24

Four Classical Data Flow ProblemsFour Classical Data Flow Problems

• Reaching definitions, Live uses of variables,
Available expressions, Very Busy
Expressions

• Def-use and Use-def chains, built from Reach
and Live, used for many optimizations

• Avail enables global common subexpression
elimination

• VeryB was used for conservative code motion

13

MachineIndepOpt-1, Sp06 © BGRyder 25

Reaching DefinitionsReaching Definitions

• Definition A statement which may change the value
of a variable

• A definition of a variable x at node k reaches node
n if there is a definition-clear path from k to n.

k

n

x = ...

... = x

x = ...

MachineIndepOpt-1, Sp06 © BGRyder 26

Live Uses of VariablesLive Uses of Variables

• Use Appearance of a variable as an operand of a 3
address statement

• A use of a variable x at node n is live on exit from
node k if there is a definition-clear path for x from k
to n.

k

n

x = ...

... = x

x = ...

14

MachineIndepOpt-1, Sp06 © BGRyder 27

Def-use RelationsDef-use Relations

• Use-def chain links an use to a definition that
reaches that use

• Def-use chain links a definition to an use that
it reaches

k

n

x = ...

... = x

x = ...

MachineIndepOpt-1, Sp06 © BGRyder 28

Optimizations Enabled by Def-useOptimizations Enabled by Def-use
• Dead code elimination (Def-use)

• Code motion (Use-def)

• Strength reduction (Use-def)

• Test elision (Use-def)

• Constant propagation (Use-def)

• Copy propagation (Def-use)

15

MachineIndepOpt-1, Sp06 © BGRyder 29

Dead Code EliminationDead Code Elimination
sum = 0
i = 1

t1 = addr(a) - 4
t2 = i * 4
i = i + 1

if i >= n goto 15 T

F

 After strength reduction,
test elision, constant propagation
the def-use links for i=1 disappear
and it becomes dead code.

MachineIndepOpt-1, Sp06 © BGRyder 30

Constant PropagationConstant Propagation

=5*i+3

i=1

i=1

i=2

=i*2
i=1

p:
q:

same constant
different constants

= 8

16

MachineIndepOpt-1, Sp06 © BGRyder 31

Classical Dataflow ProblemsClassical Dataflow Problems

• How to formulate analysis from CFG to
dataflow equations?

• Forward and backward dataflow problems
• May and must dataflow problems

MachineIndepOpt-1, Sp06 © BGRyder 32

Reaching DefinitionsReaching Definitions
Reach(m1) Reach(m2) Reach(m3)

m1 m2 m3

Reach(j)j

forward, may
dataflow problem

17

MachineIndepOpt-1, Sp06 © BGRyder 33

Reaching Definitions EquationsReaching Definitions Equations

Reach(j) = ∪ { Reach(m) ∩ pres(m) ∪ dgen(m) }

where:
pres(m) is the set of defs preserved through node m
dgen(m) is the set of defs generated at node m
Pred(j) is the set of immediate predecessors of node j

m ∈ Pred(j)

MachineIndepOpt-1, Sp06 © BGRyder 34

Live Uses of VariablesLive Uses of Variables

Live(m1) Live(m2) Live(m3)

m1 m2 m3

Live(j)jbackward, may
dataflow problem

18

MachineIndepOpt-1, Sp06 © BGRyder 35

Live Uses EquationsLive Uses Equations

Live(j) = ∪ { Live(m) ∩ pres(m) ∪ ugen(m) }

where
pres(m) is the set of uses preserved through node m
(these will correspond to variables whose defs are

preserved)
ugen(m) is the set of uses generated at node m
succ(j) is the set of immediate successors of node j

m ∈ Succ(j)

MachineIndepOpt-1, Sp06 © BGRyder 36

Available ExpressionsAvailable Expressions
• An expression X op Y is available at program

point n if EVERY path from program entry
to n evaluates X op Y, and after every
evaluation prior to reaching n, there are NO
subsequent assignments to X or Y.

X op Y
X =
Y =

X op Y
X =
Y =

X op Y
X=
Y=

n

 ρ

19

MachineIndepOpt-1, Sp06 © BGRyder 37

Global Common Global Common SubexpressionsSubexpressions

q:=a*bz:=a*b
r:=2*z

u:=a*b
z:=u/2

w:=a*b

MachineIndepOpt-1, Sp06 © BGRyder 38

Global CSEGlobal CSE

t1:=a*b
q:=t1

t1:=a*b
z:=t1
r:=2*z

u:=t1
z:=u/2

w:=a*b

Cannot be eliminated
because does not have
a*b available on all paths

z:=a*b
r:=2*z

q:=a*b

20

MachineIndepOpt-1, Sp06 © BGRyder 39

Available ExpressionsAvailable Expressions

m1 m2 m3

Avail (j)j

Avail (m1) Avail (m2) Avail (m3)

Forward, must
dataflow problem

MachineIndepOpt-1, Sp06 © BGRyder 40

Available Expressions EquationsAvailable Expressions Equations

Avail(j) = ∩ { Avail(m) ∩ epres(m) ∪ egen(m) }

where:
epres(m) is the set of expressions preserved through node m
egen(m) is the set of (downwards exposed) expressions

generated at node m
pred(j) is the set of immediate predecessors of node j

m ∈ Pred(j)

21

MachineIndepOpt-1, Sp06 © BGRyder 41

Very Busy ExpressionsVery Busy Expressions

• An expression X op Y is very busy at
program point n, if along EVERY path
from n, we come to a computation of X op Y
BEFORE any redefinition of X or Y.

X =
Y =
t1 = X op Y

X =
Y =
t2 = X op Y

X=
Y=
t3 = X op Y

 n

MachineIndepOpt-1, Sp06 © BGRyder 42

Code HoistingCode Hoisting
• SAFETY: Assume X op Y is in VeryB(n) and n

dominates all expression calculations that are
hoisting candidates p.

• For every X op Y at program point p, trace
backwards from p to n to ensure there is a path
from n--> p without any definitions of X, Y, X op Y

• Hoist (Calculate t=X op Y) at exit of node n; change
candidate calculations from s = X op Y to s = t.

• PROFITABILITY: Check that copy propagation
can eliminate all copies introduced in the previous
step. If not, undo the hoist.

22

MachineIndepOpt-1, Sp06 © BGRyder 43

Very Busy ExpressionsVery Busy Expressions

VeryB(m1) VeryB(m2) VeryB(m3)

m1 m2 m3

VeryB(j)j

MachineIndepOpt-1, Sp06 © BGRyder 44

Very Busy EquationsVery Busy Equations

VeryB(j) = ∩ { VeryB(m) ∩ epres(m) ∪ vgen(m) }

where:
epres(m) is the set of expressions preserved through node m
vgen(m) is the set of (upwards exposed) expressions

generated at node m
succ(j) is the set of immediate successors of node j

m ∈ Succ(j)

23

MachineIndepOpt-1, Sp06 © BGRyder 45

Dataflow ProblemsDataflow Problems

Very Busy
Expressions

Live Uses of
Variables

Backward
Problems

Available ExprsReaching DefsForward
Problems

Must ProblemsMay Problems

