
SSA Form, Sp06 © B G Ryder 1

Static Single Assignment Form
• What is control dependence?

– Dominators, postdominators
• SSA form - each use has one reaching defn

– Dominance frontier

R. Cytron, J. Ferrante, B. Rosen, M. Wegman,
K. Zadeck, “Efficiently Computing Static Single
Assignment Form and the Control Dependence
Graph”, ACM Toplas, vol 13, no 4, Oct 1991,
pp 451-490.

SSA Form, Sp06 © B G Ryder 2

Control Dependence
• Node Y is control dependent on node X

means there is a logical test at X whose
outcome determines if Y is executed.

• Y postdominates Z iff every execution path
from Z to program exit includes Y
(analogous to domination on the reverse
control flow graph)

X

ρ

exit Z1
Z2

Y

Y is control dependent on X

SSA Form, Sp06 © B G Ryder 3

Control Dependence
X,Y ∈ N(CFG)
Y is control dependent on X iff

(i) ∃ path from X to Y (X, Z1, Z2,...,Zk, Y)
such that ∀ Zi, Zi ≠ X, Zi is postdominated
by Y, and
(ii) X is not postdominated by Y

Idea: the predicate evaluated at X determines
if Y executes, so once you know that X
executes, you know if Y executes

SSA Form, Sp06 © B G Ryder 4

Control Dependence - Example

7

6 3 1

4 5 2

Postdominator Tree

0

1

2 3

4 5

6

7 Control flowgraph

Here nodes 5,6 are both
control dependent on 3,
but 7 is not.

exit

exit

SSA Form, Sp06 © B G Ryder 5

Properties

• Relation is not unique
– Y can be control dependent
on more than one other CFG node
– Y is control dependent on both
W and X

ρ

X
W

Z1

Z2

Y

CFG path

CFG edge

SSA Form, Sp06 © B G Ryder 6

Properties
• Relation is not transitive.

– X is control dependent on Y, Y is control dependent on
Z, but X is NOT control dependent on Z since X does
not postdominate Y.

Z

Y

X

SSA Form, Sp06 © B G Ryder 7

Control Dependence Algorithm
• Intuition: look for CFG edges such that the target

node does not postdominate the source node, then
use the postdominator tree to find control
dependences.

• Algorithm
1. Find postdominators on CFG
2. Form candidate edge set, S = { (X, Z) ∈ G | Z is not an

ancestor of X in the postdominator tree}
3. Find X and Z in postdominator tree (all ancestors of Z

in tree postdominate Z)
 Find all nodes that postdominate Z but not X, {Yi}.
 Z and {Yi} are all control dependent on X.

SSA Form, Sp06 © B G Ryder 8

Illustration
Find X and Z in postdominator tree; (X,Z) is candidate edge;
all ancestors of Z in tree postdominate Z. Find all nodes
that postdominate Z but not X, {Yi}. Then Z and {Yi} are
all control dependent on X.

X

Z

Y1

Y2
W = lca (X,Z)
in postdominator
tree

Z

W

XY2

Y1

exit

SSA Form, Sp06 © B G Ryder 9

Postdominators
• Calculated on reverse CFG (same nodes, all edges

reversed in direction) by fixed point iteration
Pdom (exit) = {exit} /* unique exit node */
for n ∈ N - {exit} do

Pdom (n) = N /* Max FP calculation */
while some Pdom(n) changes do
{ for n ∈ N - {exit} do

Pdom(n) = {n} ∪ {∩ Pdom(j) }
 j ∈ pred(n)

}
• Forward dataflow problem on reversed CFG, meet

semilattice
• Reflexive relation

SSA Form, Sp06 © B G Ryder 10

Validation
• Claim: Given (X,Z) candidate edge in CFG, the

least common ancestor(X,Z) in postdominator tree
is X or parent(X). (Ferrante, et.al., “The Program Dependence
Graph and Its Use in Optimization, TOPLAS, July 1987)
Proof: Let W= parent(X) in postdom tree. W ≠ Z because

X not postdominated by Z. Assume W does not
postdominate Z. Then ∃ path from Z to exit not
containing W. But then adding (X,Z) to that path,
creates a path from X to exit not containing W.
CONTRADICTION.

Therefore, W postdominates Z.
Therefore, W is ancestor(Z) in postdom tree.
Therefore, W or X is least common ancestor (X,Z) in

postdom tree. qed.

SSA Form, Sp06 © B G Ryder 11

Case 1
First case: if parent(X) = lca(X,Z), all

nodes on postdom tree path
(parent(X), Z] are control dependent
on X.
5 and 6 control dependent on 3

0

1

2 3

4 5

6

7

exit

7

6 3 1

4 5 2

exit

SSA Form, Sp06 © B G Ryder 12

Case 2: Loops
X

Z

Y1

Yk-1

while loop

X

Yk

Yk-1

Y1

Z

postdominator subtree

Yk

lca(X,Z) =X, and Z does not
postdominate X.
Z,Y1,...,Yk are all control
dependent on X.

Second case:
 if X = lca(X,Z) all nodes on
postdom tree path (X, Z]
are control dependent on X.

SSA Form, Sp06 © B G Ryder 13

Example
start

1

2 3

4
5

6

7

exit

entry

CFG

exit

7

6 3 1

2

start

entry

4 5

Find all edges (X,Z) st Z does
not postdominate X.
(1,2) mark {2,6 } cd on 1.
(1,3) mark { 3 } cd on 1.
(2,4) mark { 4 } cd on 2.
(2,5) mark { 5 } cd on 2.
(3,5) mark { 5,6 } cd on 3.
(entry,start) mark {start,1,7} cd on entry.

SSA Form, Sp06 © B G Ryder 14

Static Single Assignment
• Idea: each assignment of variables to be given a

unique name; each use of a variable to be reached
by only one definition of that variable

• Need to create Φ functions at join nodes reached
by more than one definition of same variable
– Dominance frontier is a subset of these join nodes where
Φ functions are necessary

if

X = 4 X = 5

if

X1 = 4 X2= 5

X3 = Φ (X1, X2)

SSA Form, Sp06 © B G Ryder 15

Dominance Frontier
• Idom(X) is the immediate dominator of X

– Idom(X) ≥ X means Idom(X) dominates X
– Idom(X) >> X means Idom(X) strictly dominates X (i.e.,

Idom(X) ≠ X)
• Dominance frontier of X (DF(X)) is the set of all

CFG nodes Y, such that X dominates predecessor
of Y in CFG, but X does not strictly dominate Y.
DF(X) = { Y | ∃ P ∈ pred(Y), X ≥ P and ¬(X >> Y)}

SSA Form, Sp06 © B G Ryder 16

Dominance Frontier
• DF of a CFG node containing an assignment

to variable v, contains those nodes which
other assignments to v may reach
– These are places in the CFG where Φ functions

will be necessary
• Iterated dominance frontier is the dominance

frontier of all definitions for a variable,
including the added Φ functions

SSA Form, Sp06 © B G Ryder 17

Intuitionρ

x

z

y

w

(Cf Barry Rosen, IBM TJ Watson Research Center)
Say we place an opaque shade at node x with a light
source at x. Consider all dark edges incident on a
lighted node. Their targets form the dominance frontier
of node x.

SSA Form, Sp06 © B G Ryder 18

SSA Algorithm
• Intuitive view:

– Find dominance frontiers for all nodes in CFG
– Locate where Φ functions are needed for all

variables v
• Find all definitions of variable v
• Find iterated dominance frontier for v

– Rename variables, propagating definition names
to their uses (v --> vi)

SSA Form, Sp06 © B G Ryder 19

SSA Form
• Two step translation

– Put Φ functions at some control merge nodes
– Rename variables in branch expressions or on either

side of an assignment including Φ assignments
 (V --> Vi)

• Minimal SSA form
– Each use of a variable is target of only one assignment

statement in the program text
– Number of Φ functions inserted is as small as possible

V1
V2 = Φ (Vi, Vk)

Need for a Φ function here
V’ = Φ (V1, V2)

SSA Form, Sp06 © B G Ryder 20

SSA
• Pruned SSA form

– Only creates Φ functions at program join points
p for a variable that has live uses at p or after p.

• Special cases: arrays, structures, aliasing
• Main work in SSA algorithm: figure out

where to put the Φ functions?

SSA Form, Sp06 © B G Ryder 21

1

2 6 4 5 3 7 8

11

12 13

9

10
Dominator Tree

7

1

2

3

4 9

5 8 10

6

11

13

12

CFG

(cf Cytron et.al., TOPLAS Oct 1991)

DF(12) = {7,11}

(i)12 ≥ 12 and ¬(12 >>7)
so 7 ∈ DF(12)
(ii)12 ≥ 12 and ¬ (12 >>11)
so 11 ∈ DF(12)

 DF(X) = { Y | ∃ P ∈ pred(Y), X ≥ P and ¬(X >> Y)}

SSA Form, Sp06 © B G Ryder 22

1

2 6 4 5 3 7 8

11

12 13

9

10
Dominator Tree

7

1

2

3

4 9

5 8 10

6

11

13

12

CFG

 DF(X) = { Y | ∃ P ∈ pred(Y), X ≥ P and ¬(X >> Y)}

(cf Cytron et.al., TOPLAS Oct 1991)

DF(2)= {3,4,7}

(i)2 ≥ 2 and ¬(2 >> 3)
(ii)2 ≥ 12 and ¬(2 >> 7)
(iii)2 ≥ 2 and ¬(2 >> 4)

SSA Form, Sp06 © B G Ryder 23

Initial Algorithm for DF
Give control flowgraph G and its dominator tree.
1. DomBy(X) = {Z | X is ancestor of Z in dominator tree}
2. foreach (X ∈ N) do
3. foreach Y ∈ DomBy(X) do

{ foreach Z ∈ succ(Y) do
if ¬ (Z ∈ (DomBy(X) - {X})) then
 DF(X) <-- DF(X) ∪ {Z}

}
• This is inefficient because we are reusing the dominance

relation for every node in steps 1 and 3. we could
accomplish the same work just knowing the immediate
dominance relation, if we processed the nodes in a ‘good’
order in step 2.

SSA Form, Sp06 © B G Ryder 24

1

2 6 4 5 3 7 8

11

12 13

9

10
Dominator Tree

7

1

2

3

4 9

5 8 10

6

11

13

12

CFG

Idea: DF(10) is related to DF(9)
is related to DF(3); so calculate
DF’s in order for 10, 9, 3.

SSA Form, Sp06 © B G Ryder 25

Improved DF Calculation
• Define DF(X) = DF local (X) ∪ DF up (Z) where

Z is child(X) in dominator tree
DF local (X) = {Y ∈ succ(X) | ¬(X >> Y)}
DF up (Z) = { Y ∈ DF(Z) | ¬(idom(Z) >> Y}

• Then can recursively calculate DF for all nodes in
a bottom up traversal of the dominator tree.

• Easier, equivalent conditions to use
DF local (X) = {Y∈ succ(X) | idom(Y) ≠ X }
DF up (Z) = { Y ∈ DF(Z) | idom(Y) ≠ parent(Z)}

SSA Form, Sp06 © B G Ryder 26

Improved DF Algorithm
Traverse dominator tree in bottom up order; at node X

do:
DF(X) <-- ∅
foreach Y ∈ succ(X) do

if (idom(Y) ≠ X) then DF(X) <-- DF(X) ∪ {Y}

foreach Z ∈ Children (X) do
foreach Y ∈ DF(Z) do

if (idom(Y) ≠ X) then DF(X) <-- DF(X) ∪ {Y}
Note: no storage needed for DF local or DF up

SSA Form, Sp06 © B G Ryder 27

1

2 6 4 5 3 7 8

11

12 13

9

10
Dominator Tree

7

1

2

3

4 9

5 8 10

6

11

13

12

CFG

Node DomChi DF(Node) DFlocal DFup
12 none 7,11 7,11 ∅
13 none 12 12 ∅
11 12,13 7,11 ∅ 7,11
etc.

SSA Form, Sp06 © B G Ryder 28

Where to place the Φ’s?
• Want dominance frontiers of all nodes containing
Φ functions or source level definitions for a
particular variable v

• Iterated Dominance Frontier
– Let S = all nodes containing a definition of variable v in

program; then DF(S) will be set of nodes where Φ
functions for variable v should be place initially.

– DF1 = DF(S)
– DFi+1 = DF(S ∪ DF i)

• We need to calculate the iterated dominance
frontier with respect to every variable in the
program to convert it into SSA form

SSA Form, Sp06 © B G Ryder 29

Example
x = 1;
y = 1; /*1*/
Repeat /*2*/

if()then y = x /*3*/
else y = x + 1; /*4*/
print (x,y); /*5*/
x = 2 * x;

until (); /*6*/

Entry 1

2

3 4

5

6
Exit

Entry

1

2

3 4 5

6

Exit

Find defns of x.
Calculate DF(1), DF(5):
DF(1) = {Exit}; DF(5) = { 2,Exit }
Calculate the iterated DF
for x: DF1 = DF(1,5) = { 2 }
DF2 = DF(1,2,5) = { 2 }
so DF2 = DF1

x=

x=

Φ=

SSA Form, Sp06 © B G Ryder 30

Example
x = 1;
y = 1; /*1*/
Repeat /*2*/

if()then y = x /*3*/
else y = x + 1; /*4*/
print (x,y); /*5*/
x = 2 * x;

until (); /*6*/

Entry 1

2

3 4

5

6
Exit

Entry

1

2

3 4 5

6

Exit

Find defns of y.
Calculate DF(1), DF(3), DF(4):
DF(1) = {Exit}; DF(3) ={5}; DF(4) = {5}
Calculate the iterated DF for y:
DF1 = DF(1,3,4) = { 5 }
DF2 = DF(1,3,4,5) = { 5,2 }
DF3 = DF2

y=

y= y=

Φ

Φ

SSA Form, Sp06 © B G Ryder 31

Variable Renaming
X1 = 1;
Y1 = 1;
repeat

X2 = Φ(X1, X3);
Y2 = Φ(Y1, Y5);
 if () then Y3 = X2

 else Y4 = X2 + 1;
Y5 = Φ(Y3, Y4);
print (X2, Y5);
X3 = 2*X2;

until ();

Renaming done through top down traversal of the
dominator tree; process user definitions and Φ
functions in same traversal;

For each variable Z need stack for current index i for
Zi and count of total # defs for Z seen so far

x = 1;
y = 1; /*1*/
Repeat /*2*/

if()then y = x /*3*/
else y = x + 1; /*4*/
print (x,y); /*5*/
x = 2 * x;

until (); /*6*/

 new code: old code:

SSA Form, Sp06 © B G Ryder 32

More on control dependence
• Dominance frontiers in reverse CFG yield the

control dependence relation
– Y is control dependent on X in CFG iff X ∈ DF(Y) on

reverse CFG
• For structured programs (i.e., whiles, ifs, straight-line code),

DF(n) contains ≤ 2 nodes; therefore, every node is control
dependent on at most 2 other nodes in structured programs

– If there is a non-null path from X to Y such that Y
postdominates every node after X on that path in the
CFG, then Y will dominate those nodes, but not X in the
reverse CFG

– If Y does not strictly postdominate X in the CFG, then Y
will not strictly dominate X in the reverse CFG

SSA Form, Sp06 © B G Ryder 33

Experimental Observations
• Size of dominance frontier varies linearly with size

of program
• Size of control dependence graph is linear in size of

program
• Found no relation between program size and

– total #assignments in final program/ total # assignments
in original program

– total # defns and uses in final program/total # defns and
uses in original program

• Claimed number of Φ functions varies linearly
with program size (Cytron et.al., Fig 21)

SSA Form, Sp06 © B G Ryder 34

Complexity
• Each assignment statement is mapped to a tuple of

identifiers <u,v,z..> = <...>, same length tuple of
expressions

• Finding DFs for CFG takes O(E + Σn |DF(n)|) *0*
• Let Atotal (n) = A original (n) + A Φ (n)
Then work of Φ function placement (i.e., finding iterated
dominance frontiers) is O(Σn (Atotal (n) * | DF(n) |)) *1*
where | DF(n) | is observably small in practice, so this is

effectively O(Atotal (n) * averDF), for averDF being
weighted average of |DF(X)| sizes

• Renaming takes O(Mtot) *2* where Mtot is total number of
variable occurrances in resulting program

• So worst case complexity is the sum of these three terms.

SSA Form, Sp06 © B G Ryder 35

Optimizing the DF algorithm

• Idea: if Y is an ancestor of X in the
dominator tree, then if DF(X) has been
computed, you can use it to compute DF(Y).
– Yields a linear time algorithm for Φ placement

• Use new graphical representation, DJ graph,
related to dominator tree
– Nodes are same as CFG
– Edges are either dominator tree edges or join

edges
• CFG edge (X,Y) is a join edge, if X does not strictly

dominate Y (Y called join node)

 “Computing Φ nodes in Linear Time Using DJ graphs”,
V. Shreedhar and G. Gao, Jl Programming Languages 1995

SSA Form, Sp06 © B G Ryder 36

DJ Graph

• DJ graph built from dominator tree and
CFG
– D-edges: from dominator tree (entire tree

included)
– J-edges: all (X,Y) from CFG st ¬(X>>Y)

• join edges, Y is join node
• Find by marking all edges (X,Y) where X¬=idom(Y)

– Essentially, DJ graph is dominator tree
augmented with join edges

 “Computing Φ nodes in Linear Time Using DJ graphs”,
V. Shreedhar and G. Gao, Jl Programming Languages 1995

SSA Form, Sp06 © B G Ryder 37

DJ Graph
• DJ graph is linear in size of CFG (Thm 3.1)

because |EDJ | < |N| + |E|
• Assign level number to each dominator tree

node, equal to its depth in dominator tree
from root
– Use these to order the DF computations

• if X ∈ DJ graph, then X.level ≤ Y.level,
∀ Y ∈ DF(X) and ∀ Y ∈ IDF(X) (Thm 3.2)
• Idea: calculate DF(X) in bottom up order on dom

tree; Use D-edges to order the DF calculation; use
J-edges to identify the Φ nodes

SSA Form, Sp06 © B G Ryder 38

DJ Graph
• A node Z ∈ DF(X) iff ∃ Y ∈ subtree of dom

tree rooted at X with (Y,Z) as a J-edge and
Z.level ≤ X.level (lemma 3.1)

X

Y

Z

ρ

join edge

Case 2: Z ∉ subtree(X)

X

Y

, Z

ρ

join edge

Case 1: Z ∈ subtree(X)

SSA Form, Sp06 © B G Ryder 39

Usually drawn by adding
join edges to dominator tree.

1

2 6 4 5 3 7 8

11

12 13

9

10

Dominator Tree

level 0

level 1

level 2

level 3

D edges in cfg
D edges not in cfg

J edges in cfg

1

2

3

4 9

5 8 10

6

7

11

13

12

DJ Graph Example

SSA Form, Sp06 © B G Ryder 40

Naive DF Calculation
DF(X) = ∅
∀Y ∈ Subtree(X)
{ If ((Y,Z) is a J edge)

if (Z.level ≤ X.level) DF(X) = DF(X) ∪ {Z}
}
• If use algorithm to compute DF’s for all nodes and

then apply definition of iterated DF (IDF), have a
quadratic method

• But we can alter this approach to compute IDF in
linear time ∀ CFG nodes

• Key observations
– Order of DF computation wrt dominator tree is crucial
– Can limit J edges to check to compute DF

SSA Form, Sp06 © B G Ryder 41

Algorithm Defns
• Each node can be marked

– (visited, not visited), (in Nα , not in Nα), (in Nφ , not in N
φ), with its level number

• Each CFG edge is a D or J edge
• Ordered buckets - a restricted priority queue,

implemented as an array of lists
– Node W with level = i is saved to be processed in

OrderedBuckets.list[i]

SSA Form, Sp06 © B G Ryder 42

Algorithm Overview
Input: set of initial variable definition nodes(Nα); Output: IDF(Nα)= NΦ

/* Initialize all data structures; Insert Nα into OrderedBuckets */
while (OrderedBuckets ≠∅) do

CurrentRoot = GetNode(); //removes node with max level from
OrderedBuckets
Mark CurrentRoot as visited;//CurrentRoot is global variable
Visit(CurrentRoot);

endwhile;
procedure visit(X)
{ ∀ Y ∈ succ(X) in DJ graph do

 { if ((X,Y) is J edge) then
 { if (Y.level ≤ CurrentRoot.level) then

// Add Y to IDF(CurrentRoot) if not already there and mark it added
(in Nφ); add Y to OrderedBuckets unless Y there already}
 else // (X,Y) is D edge; if Y is not yet visited, then mark it visited
and execute visit(Y);

}

SSA Form, Sp06 © B G Ryder 43

Example
1

2 3

4 9

5
7

10 11

6
8

15

12

13

14

CFG

End

Start

Start

1

2 4 7 8 15 3

5

6

9

12 10 11

13

14

End

Dom Tree

 “Computing Φ nodes in Linear Time Using DJ graphs”,
V. Shreedhar and G. Gao, Jl Programming Languages 1995, p196

SSA Form, Sp06 © B G Ryder 44

Example

12 10 11

Start

1

2 4 7 8 15 3

5

6

9

13

14

End

D edges

J edges

0
1
2
3

4
5

5

13

OrderedBuckets,
an array of lists

Assume initial defns at
nodes 5, 13 so Nα = {13,5}.
Want IDF({5,13}) as final
answer, where to place Φ nodes;
this is NΦ set being formed.
Initialize OB with Nα
level(13)=5, level(5)=3.

DJ Graph

SSA Form, Sp06 © B G Ryder 45

ExampleStart

1

2 4 7 8 15 3

5

6

9

12 10 11

13

14

End

D edges

J edges First visit(13), removing it from OB.
will visit all succ(13) in DJ graph.
CurrentRoot = 13. (13,15), (13,3) are
J edges. test levels and find must add
15, 3 to NΦ and OrderedBuckets;

0
1
2
3

4
5

5

visited

15 3

SSA Form, Sp06 © B G Ryder 46

ExampleStart

1

2 4 7 8 15 3

5

6

9

12 10 11

13

14

End

D edges

J edges

0
1
2
3

4
5

5

15 3

12

(13,14) is D edge so visit(14).
(14,12) is J edge so add 12 to NΦ
and OrderedBuckets;
then visit(13) terminates.

visited

visited

SSA Form, Sp06 © B G Ryder 47

ExampleStart

1

2 4 7 8 15 3

5

6

9

12 10 11

13

14

End

D edges

J edges

0
1
2
3

4
5

5

15 3

visited

visited

Now do visit(12); since (12,13) is D edge
and 13 marked visited, DF(12) = empty
and it adds nothing to NΦ. . Next do
visit(5), etc.

visited

