Slicing - 2

* Dynamic Slicing
— Slicing a particular execution of a program
— Questions of precision

— Preprocessing to obtain dependence info versus on-
the-fly caculation tradeoffs

— Using slicing to find bugs

H. Agrawal, J. Horgan, “Dynamic Program Slicing”, PLDI’90
X. Zhang, R. Gupta, Y. Zhang, “Precise Dynamic Slicing Algorithms”, ICSE’03

Slicing-2, Sp06 © BGRyder 1

Definition

* Given an execution history his of a program
P for a test t and a variable var, the
dynamic slice of P wrt <var,his> is the set of
all statements s€his whose execution had
some effect on the value of var as observed
at the end of execution -- Agrawal & Horgan, PLDI’90

— Similar meaning to static slice but are working with a
trace from program execution

Slicing-2, Sp06 © BGRyder 2

Dynamic Slicing 1, jpuos

1. read(n);

2.k:=1;

3. while k<=n do

{4. if(kmod 2=0)5.x:=17;

Gather dependences on a specific execution.
Slicing criterion specifies input and
distinguishes statement instances in trace.
e.g., (n =2,%*% ,x)

6. elsex:=18; Trace will be:
7. ki=k+1; {11,21,31,41,61,71,32,42,51,72,33,81}
} Slice will be statements{1,2,3,4,5,7,8}
8. write (x);//** because stmt 7 was the last stmt to define x

before exiting the loop.
Original Program

Slicing-2, Sp06 © BGRyder 3

Dynamic Slicing Approaches

* Agrawal and Horgan present 4 possible

algorithms

* Algm 1: Project PDG on nodes (stmts) seen in the program
execution; Do static slicing algorithm on this projection

* Algm 2: Mark PDG edges with data dependences during
program execution; Traverse graph only on marked edges

¢ Algm 3: Create separate node for each run-time stmt
occurrence s, with outgoing dependence edges ONLY to those
statement occurrances on which s is dependent

* Algm 4: Do algorithm 3, but reuse nodes if their transitive
dependences are the same
— Algms 1+2 are imprecise; Algms 3+4 are precise, with 4
requiring less space than 3

Slicing-2, Sp06 © BGRyder 4

Agrawal et. al, Example -Algm 1

PLDI'90

Algm 1: Project PDG on nodes (stmts) seen in the
program execution; Do static slicing algorithm
on this projection

{1. read(x);
2. If (x < 0) then
{ 3. v = f1(x);
4. z:= gl(x);}

else {5. If (x = 0) then _
o) PDG for x=-1;
(6. y := £2(x);
7. 2 1= g20) ;) cd edges dashed;
else {8. y := £3(x); dd edges solid

9. z = g3(x);}

}
10. write (y):
11. write (z);

Slicing-2, Sp06 © BGRyder

Algm 1 - Imprecision

Agrawal et. al,
PLDI'90

o W N R
s
o
= o

. while (k <= n) do PDG for n=1

{6. z := £(z,y)
7.y :=g(y);
8. k :=k +1

}9. write(z);

Slicing-2. Sp06 © BGRyder {1 ,2,3,4,5‘1 ,6‘1 ,71 ,81 , 52 y 9} 8

Algm 2 Agrawal et. al,

PLDI'90

Algm 2: Mark PDG edges with data dependences

{1. read(n); during program execution; Traverse graph only
2. z :=0; on marked edges
3.y :=0; PDG for n=1
4. k :=1;
5. while (k <= n) do
{6. z := £(z,y);
7.y :=gly):;

8. k :=k +1

}9. write(z);

}
Slicing-2, Sp06 © BGRyder {1 ,2,3,4,\E)‘1 ,61 ,71 ,81 y 52 3 9} 7
Algm 3
Algm 3: Create separate node for each run-time stmt
occurrence s, with outgoing dependence edges ONLY
{1. read(n); tothosestatement occury@nces on which s is dependent
2.z :=0; 1 4 =2
3.y :=0;
4. k :=1;
5. while (k <= n) do 5
{6. z := £(z,y)~ an AR
N~
1= . N
8. y :=gl(y); “ . A
else 9. y:= 2*n; !
10. k := k + 1 6 7.@10

}11. write(z);

Slicing-2, Sp06 © BGRyder 8

Preprocessing Dependences

» Idea: Save space over Algm 4 by associating
dependence tags with edges to identify the instance
of a statement in a dependence

» Data dependence between 1st occurrence of 2 and 2nd
occurrence of 3 is denoted (2!, 3%) on edge (2,3)
* Split algorithm into
— Finding dependences in trace and adding labels to graph

— Calculate the transitive closure of data and control dependence
edges

* Three precise algorithm versions

Slicing-2, Sp06 © BGRyder 9

Precise Executable Slicing

* Zhang et al, ICSE’03 - paper on precise executable slices

* Full Preprocessing (FP): calculate all data dependences
for entire trace, label edges in PDG with stmt instances of

dependence
{1. read(n);
S
4. k :=1; 71— S/ 1.6/03)
5. while (k <= n) d ’

7.y :=g(y);
8. k :=k +1
}19. write(z);
} Slicing-2, Sp06 © BGRyder Partial PDG 10

Precise Executable Slicing

* No Preprocessing (NP): do all data dependence
calculation on-demand

» FP takes too much storage to do all the labeling

» Traverse trace backwards to find data dependences; cache
results to avoid duplicate traversals (NPwoC, NPwC)

* Limited Preprocessing (LP): idea is to divide trace
into blocks whose defns are summarized so that
the backwards traversal can be optimized by
skipping irrelevant blocks

* Each chunk has a summary of downwards exposed defns
* Can skip over block if none of variables is of interest

Slicing-2, Sp06 © BGRyder 11

Experiments

« Comparisons between all three approaches and
Algms 1+2 of Agrawal & Horgan

e Used C programs and some UNIX benchmarks

e Technique
* Collected traces on 3 inputs per benchmark

* Computed 25 slices per trace (from 25 different vars at
program end)

* Computed 25 mid-program slices for first input

Slicing-2, Sp06 © BGRyder 12

Dynamic Slices

Zhang et. al, ICSE’03

Program Static Instructions u PDS

ﬂecuted MAX
126.gcc 585491 | 170135 6614 2 11860 |
126.gcc @ Midpoint 585491 | 144504 23258 | 2 7405
099.go @ End 95459 | 61350 5382 4 8449
099.go @ Midpoint 95459 | 55538 3560 2 6900
134.perl @ End 116182 | 21451 765 2 2208 |
134.perl @ Midpoint 116182 | 20934 601 2 2208
130.11 @ End 31829 10958 834 2 834
130.11 @ Midpoint 31829 10429 48 2 584
008.espresso @ End 74039 27333 350 2 1304
008 . espresso @ Midpoint 74039 21027 295 2 1114
Average [

Benchmarks with #static instructs, #executed instructs,
average size of slice (with min/max sizes)

Slicing-2, Sp06 © BGRyder 13

Cumulative Times of 25 Slices

Zhang et. al, ICSE’03
134.pert @ End —(1)

Shcon
Slicing-2, Sp' 14

Comparison with Algm 2

* Compared LP with Algm 2

* Compared slice sizes but that might be dependent upon choice
of slicing criterion

— Measured on average over programs 4-5.6 times size difference in
slices

— When looked at data slice sizes saw more difference than when
examined full slices (with control dependence) which were 1-2
times larger for Algm 2

* Compared size of dynamic dependence graphs obtained

» Limited comparison of execution times on small numbers of
slices showed LP competitive with Algm 2

Slicing-2, Sp06 © BGRyder 15

Fault location with slicing

* Idea: combine delta debugging with slicing to
isolate bug causes

— Combine delta debugging and chops to find failure-
inducing code
* Delta debugging can find failure-inducing input

— Use forward dynamic slice from failure-inducing input
and backward dynamic slice from faulty output to form
a failure-inducing chop -- to locate bug cause
* Forward dynamic slice finds all stmts which are affected by a
specific defining input
* Chop is code in intersection of forward and backward slice of
same program

N.Gupta, H. He, X. Zhang, R. Gupta, “Locating
Faulty Code Using Failure-inducing Chops”, ASE’05

Slicing-2, Sp06 © BGRyder

Failure-inducing Chop

FS is forward dynamic slice from input
BS is backward dynamic slice from output;

combine into chop Gupta et. al, ASE’05

Failure inducing input

Faulty output
Q: does the faulty code have to lie within the chop?
Slicing-2, Sp06 © BGR)why or Why nOt? 17

Experiments on Siemens suite

Gupta et. al, ASE’05
Table 1: Overview of benchmark programs.

Program Desecription Versions | LOC | Tests
print_tokens lexical analyzer 5 565 | 4072
print_tokens2 lexical analyzer 7 510 | 4057
schedule prionty scheduler 6 412 | 2627

schedule2 prionty scheduler 2 307 | 2683

replace pattern replacement 18 563 | 5542

Benchmarks

Had to exclude some (e.g., errors of omission, no output)

Slicing-2, Sp06 © BGRyder 18

Results

Gupta et. al, ASE’05

Table 4: Average per benchmark: results of fault location using simplified inputs.

Program Avg. BS 0 Avg. FS Avg. FChop | [mFChop | FChop/BS | FChop/ALL
print_tokens 62 1 522 1 40.6 1 0.65 0.07
print_tokens2 55 0.43 66.14 1 40 0.43 0.73 0.08

schedule 7733 0.67 67 1 49.83 0.67 0.64 0.12

schedule2 62.5 1 74 1 425 1 0.68 0.14

replace 74.72 0.93 77.89 1 50.78 0.93 0.68 0.09

In* column shows fraction of inputs out of total inputs
for which faulty statement(s) is contained in structure *

1 means success; value varies from 0-1, over the program
versions; Other columns shows average size in stmts over
program versions; last 2 columns are ratios of sizes.

Slicing-2, Sp06 © BGRyder 19

How to improve?
X. Zhang, R. Gupta, N. Gupta, “Locating Faults through
Automated Predicate Switching”, ICSE’06

e Idea: Simulate changes in program state by
sequence of branch outcomes at runtime;
Using a failing run, find a runtime predicate
outcome switch that causes program to
succeed

* Critical predicate

* Need to look for a predicate evaluation instance to
switch because fault may not be in predicate itself,
which may evaluation correctly often

* Practical search strategy

Slicing-2, Sp06 © BGRyder 20

10

Predicate Switching

* Switch only one predicate per run
* Order

— Last-executed first-switched order

» Prioritization-based order on degree of being
influenced by faulty code (works better than
LEFS)

* Algorithm
* Find erroneous output value
* Rerun program to collect conditional branches; Find
predicates for switching using failure-inducing chop, exploring
closest predicates first
» Find critical predicate (stop at first switched predicate causing
the program to succeed)

Slicing-2, Sp06 © BGRyder 21

Issues

* What to do about crashes?
* Pgm executes pred and does not crash - OK

* Pgm executes pred and crashes again- CONTINUE
* Pgm does not execute pred -UNCLEAR OUTCOME
* Infinite loops

* May be caused by a switch - fixed by setting an
arbitrary cut-off for # of instructions

Slicing-2, Sp06 © BGRyder 22

11

Experiments

* In 15:20 cases found a critical predicate

. .
* 5 times search failed
Zhang et al,
. .
* 11 times was closest predicate ICSE’06
Table 4: Successful/Failed Searches.

Program Found Where | Which | False +ves
flex 2.5.319(a) | ves genc@1813 | 0 | 0
flex 2.5.319(b) no search failed
flex 2.5.319(c) no search failed
erep 2.5 yes grepc@532 | 0 | 0
grep 2.5.1 (a) yes searchc @549 | 0 | 0
erep 2.5.1 (b) no search failed
grep 2.5.1 (¢) yes dfac @ 2854 2 0
make 3.80 (a) yes read.c @ 6162 143 1
make 3.80 (b) yes remake.c @ 652 1 0
be-1.06 yes storage.c @ 176 9 0
tar-1.13.25 yes prepargs.c @ 81 0 0
udy yes parser.c @ 3496 0 0
s-flex-v4 yes flex.c @ 2978 0 0
s-flex-v3 no search failed — error in DP
s-flex-vé no search failed — error in DP
s-flex-v7 yes flex.c @ 9171 0 0
s-flex-v8 yes flex.c @ 11833 0 0
s-flex-v9 yes flex.c @ 5046 0 0
s-flex-v10 yes flex.c @ 2687 1 0

Slicing-2. Sp06 © BGRyder s-flex-v1l yes flex.c @ 3559 0 0

23

How to locate faulty code?

* Calculate dynamic chop backward from the
critical predicate and forward from failure-
inducing input

» Use 2 chops: data-only, full
* Chops are smaller than slices
* Where were the faults?
— 4: in critical predicate
— 1: in full chop but not in data-only chop

— 5: in data-only chop (and in full chop)

— 2:in forward full slice of critical predicate intersected with
backward full slice of erroneous input

— 2: in forward full slice of critical predicate

* Claim whenever could find critical predicate, then faulty code
was in its upwards or downwards slices or chops!

Slicing-2, Sp06 © BGRyder

24

12

Cause of the fault

* Once know faulty code, need to find its
cause
* Manual search by user

* Heuristic: examine stmts at smaller dynamic
dependence distance from critical predicate first

Table 7: Dependence Distance Based Search.

Program Statements | Dep. Distance
s-flex-v4 1 | 0
s-fex-v> search failed — error n DP
s-flex-vo search failed — error in DP
s-flex-v/ 2 1
s-flex-v8 2 0
s-flex-v9 1 0 Zhang et al’
s-flex-v10 3 1 ’
s-flex-vIT 3 2 ICSE’06
Slicing-2, Sp06 © BGRyder 25

13

