
1

Slicing-2, Sp06 © BGRyder 1

Slicing - 2

• Dynamic Slicing
– Slicing a particular execution of a program
– Questions of precision
– Preprocessing to obtain dependence info versus on-

the-fly caculation tradeoffs
– Using slicing to find bugs

H. Agrawal, J. Horgan, “Dynamic Program Slicing”, PLDI’90
X. Zhang, R. Gupta, Y. Zhang, “Precise Dynamic Slicing Algorithms”, ICSE’03

Slicing-2, Sp06 © BGRyder 2

Definition

• Given an execution history his of a program
P for a test t and a variable var, the
dynamic slice of P wrt <var,his> is the set of
all statements s∈his whose execution had
some effect on the value of var as observed
at the end of execution -- Agrawal & Horgan, PLDI’90

– Similar meaning to static slice but are working with a
trace from program execution

2

Slicing-2, Sp06 © BGRyder 3

Dynamic Slicing
1. read(n);
2. k := 1;
3. while k<= n do
{4. if (k mod 2= 0) 5. x := 17;
 6. else x := 18;
 7. k := k + 1;
}
8. write (x);//**

Original Program

Gather dependences on a specific execution.
Slicing criterion specifies input and
distinguishes statement instances in trace.
e.g., (n = 2, **1 , x)
Trace will be:
{11,21,31,41,61,71,32,42,51,72,33,81}
Slice will be statements{1,2,3,4,5,7,8}
because stmt 7 was the last stmt to define x
before exiting the loop.

Tip, JPL’95

Slicing-2, Sp06 © BGRyder 4

Dynamic Slicing Approaches

• Agrawal and Horgan present 4 possible
algorithms

• Algm 1: Project PDG on nodes (stmts) seen in the program
execution; Do static slicing algorithm on this projection

• Algm 2: Mark PDG edges with data dependences during
program execution; Traverse graph only on marked edges

• Algm 3: Create separate node for each run-time stmt
occurrence s, with outgoing dependence edges ONLY to those
statement occurrances on which s is dependent

• Algm 4: Do algorithm 3, but reuse nodes if their transitive
dependences are the same

– Algms 1+2 are imprecise; Algms 3+4 are precise, with 4
requiring less space than 3

3

Slicing-2, Sp06 © BGRyder 5

Example -Algm 1
{1. read(x);
 2. If (x < 0) then
 { 3. y := f1(x);

 4. z:= g1(x);}
 else {5. If (x = 0) then

{6. y := f2(x);
 7. z := g2();)

 else {8. y := f3(x);
 9. z := g3(x);}

 }
 10. write (y);
 11. write (z);
}

Agrawal et. al,
PLDI’90

PDG for x=-1;
cd edges dashed;
dd edges solid

 Algm 1: Project PDG on nodes (stmts) seen in the
program execution; Do static slicing algorithm
on this projection

Slicing-2, Sp06 © BGRyder 6

Algm 1 - Imprecision

{1. read(n);
 2. z := 0;
 3. y := 0;
 4. k := 1;
 5. while (k <= n) do

{6. z := f(z,y);
 7. y := g(y);
 8. k := k + 1
}9. write(z);

}

Agrawal et. al,
PLDI’90

PDG for n=1

{1,2,3,4,51 ,61 ,71 ,81 , 52 , 9}

4

Slicing-2, Sp06 © BGRyder 7

Algm 2

{1. read(n);
 2. z := 0;
 3. y := 0;
 4. k := 1;
 5. while (k <= n) do

{6. z := f(z,y);
 7. y := g(y);
 8. k := k + 1
}9. write(z);

}

Agrawal et. al,
PLDI’90

PDG for n=1

Algm 2: Mark PDG edges with data dependences
during program execution; Traverse graph only
on marked edges

{1,2,3,4,51 ,61 ,71 ,81 , 52 , 9}

Slicing-2, Sp06 © BGRyder 8

Algm 3
 Algm 3: Create separate node for each run-time stmt
occurrence s, with outgoing dependence edges ONLY
to those statement occurrences on which s is dependent{1. read(n);

 2. z := 0;
 3. y := 0;
 4. k := 1;
 5. while (k <= n) do

{6. z := f(z,y);
 7. If (k != n)

 8. y := g(y);
 else 9. y:= 2*n;

 10. k := k + 1
}11. write(z);

}

1 2 3 4

5

6 7 8

6 7 9

n=2

10

10

11

5

Slicing-2, Sp06 © BGRyder 9

Preprocessing Dependences

• Idea: Save space over Algm 4 by associating
dependence tags with edges to identify the instance
of a statement in a dependence

• Data dependence between 1st occurrence of 2 and 2nd
occurrence of 3 is denoted (21 , 32) on edge (2,3)

• Split algorithm into
– Finding dependences in trace and adding labels to graph
– Calculate the transitive closure of data and control dependence

edges
• Three precise algorithm versions

Slicing-2, Sp06 © BGRyder 10

Precise Executable Slicing
• Zhang et al, ICSE’03 - paper on precise executable slices
• Full Preprocessing (FP): calculate all data dependences

for entire trace, label edges in PDG with stmt instances of
dependence

{1. read(n);
 2. z := 0;
 3. y := 0;
 4. k := 1;
 5. while (k <= n) do

{6. z := f(z,y);
 7. y := g(y);
 8. k := k + 1
}9. write(z);

}

1 2 3 4

5

6 7 8

9

(1,6)/(1,3)
(62 , 71) ==
(2,6)/(1,7)

(1,7)/(1,3)

Partial PDG

6

Slicing-2, Sp06 © BGRyder 11

Precise Executable Slicing

• No Preprocessing (NP): do all data dependence
calculation on-demand

• FP takes too much storage to do all the labeling
• Traverse trace backwards to find data dependences; cache

results to avoid duplicate traversals (NPwoC, NPwC)

• Limited Preprocessing (LP): idea is to divide trace
into blocks whose defns are summarized so that
the backwards traversal can be optimized by
skipping irrelevant blocks

• Each chunk has a summary of downwards exposed defns
• Can skip over block if none of variables is of interest

Slicing-2, Sp06 © BGRyder 12

Experiments

• Comparisons between all three approaches and
Algms 1+2 of Agrawal & Horgan

• Used C programs and some UNIX benchmarks
• Technique

• Collected traces on 3 inputs per benchmark
• Computed 25 slices per trace (from 25 different vars at

program end)
• Computed 25 mid-program slices for first input

7

Slicing-2, Sp06 © BGRyder 13

Dynamic Slices

Benchmarks with #static instructs, #executed instructs,
average size of slice (with min/max sizes)

Zhang et. al, ICSE’03

Slicing-2, Sp06 © BGRyder 14

Cumulative Times of 25 Slices
Zhang et. al, ICSE’03

8

Slicing-2, Sp06 © BGRyder 15

Comparison with Algm 2

• Compared LP with Algm 2
• Compared slice sizes but that might be dependent upon choice

of slicing criterion
– Measured on average over programs 4-5.6 times size difference in

slices
– When looked at data slice sizes saw more difference than when

examined full slices (with control dependence) which were 1-2
times larger for Algm 2

• Compared size of dynamic dependence graphs obtained
• Limited comparison of execution times on small numbers of

slices showed LP competitive with Algm 2

Slicing-2, Sp06 © BGRyder 16

Fault location with slicing

• Idea: combine delta debugging with slicing to
isolate bug causes
– Combine delta debugging and chops to find failure-

inducing code
• Delta debugging can find failure-inducing input

– Use forward dynamic slice from failure-inducing input
and backward dynamic slice from faulty output to form
a failure-inducing chop -- to locate bug cause
• Forward dynamic slice finds all stmts which are affected by a

specific defining input
• Chop is code in intersection of forward and backward slice of

same program

N.Gupta, H. He, X. Zhang, R. Gupta, “Locating
Faulty Code Using Failure-inducing Chops”, ASE’05

9

Slicing-2, Sp06 © BGRyder 17

Failure-inducing Chop
FS is forward dynamic slice from input
BS is backward dynamic slice from output;
combine into chop

Q: does the faulty code have to lie within the chop?
Why or why not?

Gupta et. al, ASE’05

Slicing-2, Sp06 © BGRyder 18

Experiments on Siemens suite

Benchmarks
Had to exclude some (e.g., errors of omission, no output)

Gupta et. al, ASE’05

10

Slicing-2, Sp06 © BGRyder 19

Results

In* column shows fraction of inputs out of total inputs
for which faulty statement(s) is contained in structure *
1 means success; value varies from 0-1, over the program
versions; Other columns shows average size in stmts over
program versions; last 2 columns are ratios of sizes.

Gupta et. al, ASE’05

Slicing-2, Sp06 © BGRyder 20

How to improve?

• Idea: Simulate changes in program state by
sequence of branch outcomes at runtime;
Using a failing run, find a runtime predicate
outcome switch that causes program to
succeed

• Critical predicate
• Need to look for a predicate evaluation instance to

switch because fault may not be in predicate itself,
which may evaluation correctly often
• Practical search strategy

X. Zhang, R. Gupta, N. Gupta, “Locating Faults through
Automated Predicate Switching”, ICSE’06

11

Slicing-2, Sp06 © BGRyder 21

Predicate Switching
• Switch only one predicate per run
• Order
– Last-executed first-switched order

• Prioritization-based order on degree of being
influenced by faulty code (works better than
LEFS)

• Algorithm
• Find erroneous output value
• Rerun program to collect conditional branches; Find

predicates for switching using failure-inducing chop, exploring
closest predicates first

• Find critical predicate (stop at first switched predicate causing
the program to succeed)

Slicing-2, Sp06 © BGRyder 22

Issues

• What to do about crashes?
• Pgm executes pred and does not crash - OK
• Pgm executes pred and crashes again- CONTINUE
• Pgm does not execute pred -UNCLEAR OUTCOME

• Infinite loops
• May be caused by a switch - fixed by setting an

arbitrary cut-off for # of instructions

12

Slicing-2, Sp06 © BGRyder 23

Experiments
• In 15:20 cases found a critical predicate

• 5 times search failed
• 11 times was closest predicate

Zhang et al,
ICSE’06

Slicing-2, Sp06 © BGRyder 24

How to locate faulty code?

• Calculate dynamic chop backward from the
critical predicate and forward from failure-
inducing input

• Use 2 chops: data-only, full
• Chops are smaller than slices
• Where were the faults?

– 4: in critical predicate
– 1: in full chop but not in data-only chop
– 5: in data-only chop (and in full chop)
– 2: in forward full slice of critical predicate intersected with

backward full slice of erroneous input
– 2: in forward full slice of critical predicate

• Claim whenever could find critical predicate, then faulty code
was in its upwards or downwards slices or chops!

13

Slicing-2, Sp06 © BGRyder 25

Cause of the fault

• Once know faulty code, need to find its
cause

• Manual search by user
• Heuristic: examine stmts at smaller dynamic

dependence distance from critical predicate first

Zhang et al,
ICSE’06

