
1

TestingOOPLs, Sp06 © BGRyder 1

Testing OO Programs
• Testing

– Black box testing
– White box testing

• Coverage metrics
– Dataflow testing

• Coverage metrics

• Class testing
• Polymorphism testing

TestingOOPLs, Sp06 © BGRyder 2

Testing
• Black box testing

– Tests functional specs of system
• Test as a user
• Does not need knowledge of system internals, just the

API
• White box testing

– Tests internal logic and value flow through system
• Test with the code
• Gain confidence through coverage metrics measure

execution through parts of the code

2

TestingOOPLs, Sp06 © BGRyder 3

Coverage Metrics
• Control flow metrics

– Branch coverage
– Statement coverage

• Dataflow metrics
– Def-use relations coverage
– Seminal work by Elaine Weyuker and her

students in defining metrics and showing
their relation to one another

S. Rapps, E. Weyuker, “Selecting Software Test Data
Using Data Flow Information, IEEE TSE, April 1985,
pp 367-375.

TestingOOPLs, Sp06 © BGRyder 4

Coverage Metrics
• Direct the selection of test data to make the testing

procedure satisfy the metric
• Best criteria (?): all-paths

– Select data that traverses all paths in a program
• Data causing execution to traverse path p1 may not reveal an error

on that path
• There may be an infinite number of paths due to loops

• Rapps-Weyuker contribution
– Designed a family of test data selection criteria so finite

number of paths traversed
– Systematic exploration of satisfying the criteria
– Coverage criteria can be automatically checked

3

TestingOOPLs, Sp06 © BGRyder 5

Definition-use graph
• Each variable occurrence is definition,

computation-use(c-use) or predicate-use(p-use)
• Use the def-use associations of standard

dataflow analysis, but differentiate the types
of uses
– Associate predicate uses with edges in the graph

TestingOOPLs, Sp06 © BGRyder 6

Example
Rapps,Weyuker, TSE’85, p369

Read x,y

pow = y pow=-y

z=1

z=z*x
pow=pow-1

z=1/z answer=z+1
print answer

y>=0 y<0

pow!=0 pow=0

y<0
y>=0

p-uses on
edges in red

4

TestingOOPLs, Sp06 © BGRyder 7

Example
Read x,y

pow = y pow=-y

z=1

z=z*x
pow=pow-1

z=1/z answer=z+1
print answer

y>=0 y<0

pow!=0 pow=0

y<0
y>=0

Φ{z}9

{z}{z}8

ΦΦ7

{y}(7,9){z,
pow}

{x,z,
pow}

6

{y}(7,8)ΦΦ5

{pow}(5,7){z}Φ4

{pow}(5,6){pow}{y}3

{y}(1,3){pow}{y}2

{y}(1,2){x,y}Φ1

node c-use def edge p-use
1

2 3
4

5

6

7

8
9

Rapps,Weyuker, TSE’85, p369

TestingOOPLs, Sp06 © BGRyder 8

Coverage Criteria
• G is def-use graph and P is set of complete

paths in G
– P satisfies the all-nodes criterion if every node in G

is included in P
– P satisfies the all-edges criterion if every edge in G

is included in P
– P satisfies the all-p-uses criterion, if for every node

j and every variable x defined at j, P includes a
def-clear path wrt x from j to all p-uses of x
reachable from j

5

TestingOOPLs, Sp06 © BGRyder 9

Coverage Criteria
• G is def-use graph and P is set of complete paths in G

– P satisfies all-c-uses/some-p-uses criterion if for every node
j and every x defined at j, P includes some def-clear path
wrt x from j to all c-uses of x. if there are no such c-uses of
x, then P includes some def-clear path wrt x from j to some
edge contained in the set of p-uses of that def of x

– Similar defn for all-p-uses/some-c-uses
– P satisfies all-uses criterion if for every defn of variable x

all of its p-uses and c-uses are covered

TestingOOPLs, Sp06 © BGRyder 10

Coverage Criteria
• G is def-use graph and P is set of complete

paths in G
– P satisfies all-du-paths criterion if for every defn of

variable x, all its du-paths are included (even
multiple paths)

– P satisfies all-paths criterion if P includes every
complete path of G

• There may be infinitely many such paths

6

TestingOOPLs, Sp06 © BGRyder 11

Criteria Selection
• Tradeoff between strength of the criterion and

how carefully the program is examined
• Weak criteria: all-nodes (statement coverage)

and all-edges (branch coverage)
• How about all-defs?
• Need to compare criteria and to know which

ones imply others

TestingOOPLs, Sp06 © BGRyder 12

Comparing Criteria
• Criterion c1 includes criterion c2, if for every def-use

graph G, any set of complete paths of G that satisfies
c1 also satisfies c2.

• Criterion c1 strictly includes criterion c2, if c1
includes c2 and for some def-use graph G, there is a
set of complete paths of g that satisfies c2 but not c1,
c1 ⇒ c2

• Criteria c1 and c2 are incomparable, if neither
 c1 ⇒ c2 nor c2 ⇒ c1.

7

TestingOOPLs, Sp06 © BGRyder 13

Criteria Inclusion Hierarchy
all-paths

all-du-paths

all-uses

all-c-uses/
some p-uses

all-p-uses
some c-uses

all-defs all-p-uses

 all-edges

all-nodes

TestingOOPLs, Sp06 © BGRyder 14

Testing of Classes
• Claim class is basic unit of testing in OOPLs
• First approach for dataflow testing of classes

(in C++)
– Needs def-use analysis for object fields
– Class call graph

• Shows how methods in the class call each other
• Includes incoming edges (from outside the class) to all

public methods of the class

M.J. Harrold and G. Rothermel,
“Performing Data Flow Testing on
Classes”, FSE’94, pp 154-163.

8

TestingOOPLs, Sp06 © BGRyder 15

Testing of Classes
• Levels of testing

intra-method: unit testing
inter-method: tests a public method together with
all methods reachable from it
intra-class: tests all possible interactions between
public methods of a class (accessible by clients in
arbitrary order)

• Previous techniques focused on intra-class
testing

• Their approach: test def-use pairs

TestingOOPLs, Sp06 © BGRyder 16

Def-use pairs
• Intra-method def-use pair: both def and use

within same method
• Inter-method def-use pair: scope of the pair is

across more than one method frame
• Intra-class def-use pair: scope of the pair is

across at least two public methods of the class
and both the def and the use are in such
methods

9

TestingOOPLs, Sp06 © BGRyder 17

Intra-class def-use pairs
• Define data structure, class control flowgraph

– Assume class call graph shows all possible calls
between methods in the class and class entry
points

– Built from the class call graph by
• Adding a driver that can call any public method in class
• Expanding call graph nodes into control flow graphs for

the corresponding methods

TestingOOPLs, Sp06 © BGRyder 18

Example M.J. Harrold and G. Rothermel,
“Performing Data Flow Testing on
Classes”, FSE’94, pp 154-163.

Class call graph

10

TestingOOPLs, Sp06 © BGRyder 19

Example M.J. Harrold and G. Rothermel,
“Performing Data Flow Testing on
Classes”, FSE’94, pp 154-163.

class call graph with
frame driver

TestingOOPLs, Sp06 © BGRyder 20

Example
M.J. Harrold and G. Rothermel,
“Performing Data Flow Testing on
Classes”, FSE’94, pp 154-163.

AddToTable
GetFromTable

Lookup

class control
flowgraph

11

TestingOOPLs, Sp06 © BGRyder 21

Problems
• Approach may miss effects of client-induced aliasing
• Doesn’t include testing for integrating classes

– Inter-class testing: tests def-uses where def in one class and
use in another class

• Can we reuse def-use info in testing derived classes?
• This paper ignored dynamic dispatch and

polymorphism
– Need to test a method with all or some of its possible call

targets

TestingOOPLs, Sp06 © BGRyder 22

Testing Polymorphism
• Idea: to test polymorphic calls in a set of

classes
– Need to identify the polymorphic targets

accurately
– Need to do reference analysis of incomplete OO

programs (program fragment reference analysis)
– Need to record actual call edges exercised during

testing

 A. Rountev, A. Milanova, B.G. Ryder,
“Fragment Class Analysis for Testing of
Polymorphism in Java Software”, ICSE 2003

12

TestingOOPLs, Sp06 © BGRyder 23

Coverage Metrics
• Receiver class criterion (RC) - exercise all

possible receiver classes
• Target method criterion (TM) - exercise all

possible target methods
• Key idea: absolute (not relative) precision of

reference analysis is important!
– Uncovered call edges need to be checked by

humans - very costly

TestingOOPLs, Sp06 © BGRyder 24

Assumptions
• Select a set of classes Cls and set of methods and

fields Int from Cls
• Test suite for Int calls methods and fields from Int

and does not access any methods/fields from Cls that
are not in Int

• Let AllSuites(Int) be the set of all possible test suites
for Int (an infinite set)

• Tool input: Cls, Int, T ∈ AllSuites(Int)
• Tool output: coverage of polymorphic call sites

achieved by T wrt RC and TM criteria

13

TestingOOPLs, Sp06 © BGRyder 25

Testing Tool
1. Analysis component - computes RC and TM

criteria
2. Instrumentation component - adds code to

record call site targets and receiver types
3. Test harness - runs T
4. Reporting component - calculates coverage

at call sites

TestingOOPLs, Sp06 © BGRyder 26

Fragment Reference Analysis
• Nasko Rountev’s PhD thesis (Rutgers 2002) developed

framework for program fragment analyses
• Approach in ICSE’03 paper works for flow-insensitive

reference analyses
• Idea: create a placeholder program to represent T∈

AllSuites(Int)
– Code contains placeholder variables and statements that represent the

unknown code
– During analysis, the placeholders simulate possible effects of unknown

code in an arbitrary test suite
– Placeholder code plus Cls is analyzed by a whole-program reference

analysis

14

TestingOOPLs, Sp06 © BGRyder 27

Placeholder Code
main(){

X ph_X;//one Ph_X for each class X in Cls
ph_X = new X();//for each class X with

 //constructor in Int
//for every field f in Int declared in class X
//of type Y

ph_Y = ph_X.f; ph_X.f = ph_Y;
//for each method in Int declared in class X

ph_W = ph_X.m(ph_Y,…,ph_Z);
//for every subclass Y of class X
 ph_X = ph_Y; ph_Y = (Y)ph_X;
}

TestingOOPLs, Sp06 © BGRyder 28

Example of package
to be tested; arrows
point to methods in
Int; also need
constructors of
Factory, Station

15

TestingOOPLs, Sp06 © BGRyder 29

Placeholder code
corresponding to
example on previous
slide.

TestingOOPLs, Sp06 © BGRyder 30

Experiments
• Used java.util.zip, java.text, com.lowagie.text

libraries as data to be tested
– Selected specific testing tasks for each library

• For each testing task, found Cls and number
of polymorphic call sites

• Tested 3 fragment reference analyses: RTAf
Andf 0-CFAf

16

TestingOOPLs, Sp06 © BGRyder 31

Description of Data

TestingOOPLs, Sp06 © BGRyder 32

Findings

17

TestingOOPLs, Sp06 © BGRyder 33

Conclusions
• CHA and RTAf compute significant numbers

of infeasible receiver classes
• 0-CFAf and Andf perform well; achieve

perfect precision in over half the cases!
– Practical cost: in all cases under 20 seconds

• First study of absolute precision of reference
analyses

