Advanced Program Analyses for Object-oriented Systems

Dr. Barbara G. Ryder
Rutgers University
http://www.cs.rutgers.edu/~ryder
http://prolangs.rutgers.edu/
July 2007

PROLANGS

- Languages/Compilers and Software Engineering
 - Algorithm design and prototyping
- Mature research projects
 - Incremental dataflow analysis, TOPLAS 1988, POPL’88, POPL’90, TSE 1990, ICSE97, ICSE99
 - Pointer analysis of C programs, POPL’91, PLDI’92
 - Side effect analysis of C systems, PLDI’93, TOPLAS 2001
 - Points-to and def-use analysis of statically-typed object-oriented programs (C++/Java) - POPL’99, OOPSLA’01, ISSTA’02, Invited paper at CC’03, TOSEM 2005, ICSM 2005
 - Profiling by sampling in Java feedback directed optimization, LCPC’00, PLDI’01, OOPSLA’02
 - Analysis of program fragments (i.e., modules, libraries), FSE’99, CC’01, ICSE’03, IEEE-TSE 2004
PROLANGS

• Ongoing research projects
 - Change impact analysis for object-oriented systems PASTE’01, DCS-TR-533(9/03), OOPSLA’04, ICSM’05, FSE’06, IEEE-TSE 2007, ISSTA’07
 - Robustness testing of Java web server applications, DSN’01, IISST’04, IEEE-TSE 2005, Eclipse Wkshp OOPSLA’05, ICSE’07
 - Analyses to aid performance understanding of programs built with frameworks (e.g., Tomcat, Websphere) ISSTA’07
 - Using more precise static analyses information SE applications, SCAM’06, JSME’07, PASTE’07

Course Outline

• Lecture 1
 - Theoretical foundations of dataflow analysis
 - Issues in analyzing OO programs
 • Polymorphism
 • Dynamic class loading and reflection
 • Use of libraries and frameworks
 - What is reference analysis?
Course Outline

• Lecture 2
 - Type-based call graph construction
 - CHA, RTA
 - Dimensions of analysis precision
 - Context-insensitive reference analysis
 - Flow sensitivity, context sensitivity, field sensitivity
 - XTA, FieldSens
 - Client analyses: Side effects, devirtualization, thread/method-local objects

Course Outline

• Lecture 3
 - Context-sensitive reference analyses of OO programs
 - K-CFA versus object-sensitive analysis (ObjSens)
 - Client analyses: cast check removal, devirtualization
 - Dynamic analysis of OO programs
 - Finding 'hot methods' for JIT compilation through sampling
Course Outline

• Lecture 4
 - Experiences with dynamic sampling for FDO
 - Optimizations for OO programs
 • Method inlining w & w/o guards
 - Pre-existence
 • Control-flow path splitting
 • Method specialization
 • Object layout for better cache performance
 • JIKES RVM online FDO experiments

• Lecture 5
 - Analysis uses in testing and program understanding
 - Uses of analysis in software tools
 • Testing exception handling code
 • Interclass dependence analysis for class testing
 • Blended analysis for performance diagnosis
Lecture 1 - Outline

- Motivation
- Theoretical foundations of dataflow analysis
 - Lattices, monotone DF frameworks, fixed point theorem,
 - Convergence, complexity, precision, safety properties
- How analysis of OO programs is different from classical (Fortran) analysis
 - Polymorphism
 - Dynamic class loading and reflection
 - Use of libraries and frameworks
- Call graph construction - enabling technology

Example

```c
int f(){
    int j,k;
    j=1;
    if(...) {j=1;
        if(...) j=2;
        k=j*2;
        p: m=j*2;
        j=1;
    } else {...}
    q: k=5*j+3;
    return k;
}
```

Are any of these expressions at p and q, compile-time constants?

![Diagram showing the flow of execution in the example function.](image)
Reaching Definitions Dataflow Problem

- **Definition** A statement which may change the value of a variable
- A definition of a variable x at node k reaches node n if there is a definition-clear path from k to n.

$\text{Reach}(j) = \bigcup \{ \text{Reach}(m) \cap \text{pres}(m) \cup \text{dgen}(m) \} \quad m \in \text{Pred}(j)$

where:
- $\text{pres}(m)$ is the set of defs preserved through node m
- $\text{dgen}(m)$ is the set of defs generated at node m
- $\text{Pred}(j)$ is the set of immediate predecessors of node j
Questions

• How do we solve these dataflow eqns?
 - How do we know that a solution exists?
 - How do we know how quickly a solution can be found?

• How do we formulate other dataflow problems that are useful for code optimization?
 - What do we need to define to formulate a dataflow analysis?

• How do we define dataflow problems that involve method calls (interprocedural)?

Answers

• Firm, mathematical foundations underlie dataflow analysis
 • Lattice theory, partially ordered sets
 • Functions with specific properties to ensure convergence
 - Fixed point theorem provides solution procedure

• Serves as underpinnings of all static analyses in compilation
 • But not necessary to explain all analyses using this formalism
Lattice Theory

• Partial ordering ≤
 - Relation between pairs of elements
 - Reflexive x ≤ x
 - Anti-symmetric x ≤ y, y ≤ x ⇒ x = y
 - Transitive x ≤ y, y ≤ z ⇒ x ≤ z

• Partially ordered set (Set S, ≤)
 • 0 Element 0 ≤ x, ∀ x ∈ S
 • 1 Element 1 ≥ ∀ x ∈ S

A partially ordered set need not have 0 or 1 element.

Lattice Theory

• Greatest lower bound (glb)
 a, b ∈ partially ordered set S, c ∈ S is glb(a, b)
 if c ≤ a and c ≤ b then
 for any z ∈ S, z ≤ a, z ≤ b ⇒ z ≤ c

if glb is unique it is called the meet (∧) of a and b

• Least upper bound (lub)
 a, b ∈ partially ordered set S, c ∈ S is lub(a,b)
 if c ≥ a and c ≥ b then
 for any d ∈ S, d ≥ a, d ≥ b ⇒ c ≤ d.

if lub is unique is called the join (∨) of a and b
Partially Ordered Set Example

\[U = \{ a, b, c \} \]

partially ordered set is \(2^U \)
\(\leq \) is set inclusion
\(\{a\} \) and \(\{b, c\} \) are incomparable elements.

Definition of a Lattice \((L, \wedge, \vee)\)

- \(L \), a partially ordered set under \(\leq \) such that every pair of elements has a unique glb (meet) and lub (join).
- A lattice need not contain an 0 or 1 element.
- A finite lattice must contain an 0 and 1 element.
- Not every partially ordered set is a lattice.
- If \(a \leq x, \forall x \in L \), then \(a \) is 0 element of \(L \)
- If \(x \leq a, \forall x \in L \), then \(a \) is 1 element of \(L \)
a partially ordered set, but not a lattice

There is no lub(3,4) in this partially ordered set so it is not a lattice.

Examples of Lattices

- \(H = (2^U, \cap, \cup) \) where \(U \) is a finite set
 - \(\text{glb} (s_1, s_2) = (s_1 \wedge s_2) \) which is \(s_1 \cap s_2 \)
 - \(\text{lub} (s_1, s_2) = (s_1 \vee s_2) \) which is \(s_1 \cup s_2 \)

- \(J = (\mathbb{N}_1, \gcd, \text{lowest common multiple}) \)
 - partial order relation is integer divide on \(\mathbb{N}_1 \)
 - \(n_1 | n_2 \) if division is even
 - \(\text{lub} (n_1, n_2) = n_1 \vee n_2 = \text{lowest common multiple}(n_1,n_2) \)
 - \(\text{glb} (n_1,n_2) = n_1 \wedge n_2 = \text{greatest common divisor} (n_1,n_2) \)
Chain

- A partially ordered set C where, for every pair of elements $c_1, c_2 \in C$, either $c_1 \leq c_2$ or $c_2 \leq c_1$.
- e.g., $\{\} \leq \{a\} \leq \{a, b\} \leq \{a, b, c\}$
- and from the lattice as shown here,
 - $1 \leq 2 \leq 6 \leq 30$
 - $1 \leq 3 \leq 15 \leq 30$

Lattices are used in dataflow analysis to argue the existence of a solution obtainable through fixed-point iteration.

Finite length lattice: if every chain in lattice is finite

Functions on a Lattice

- (S, \leq) partially ordered set, $f: S \rightarrow S$ is **monotonic** iff
 \[
 \forall x, y \in S, \quad x \leq y \Rightarrow f(x) \leq f(y)
 \]
- **Monotonic** functions preserve domain ordering in their range values
 \[
 \begin{array}{c}
 y \\
 f \\
 f(x)
 \end{array}
 \]
 \[
 x
 \]

- **Distributive** functions allow function application to distribute over the meet
 \[
 \forall x, y \in S, \quad f(x) \Lambda f(y) = f(x \Lambda y)
 \]
Fixed point theorem - Why it works?

Intuition:
Given a 0 in lattice and monotonic function \(f \), \(0 \leq f(0) \).
Apply \(f \) again and obtain
\[0 \leq f(0) \leq f(f(0)) = f^2(0) \]
Continuing,
\[0 \leq f(0) \leq f^2(0) \leq f^3(0) \leq \ldots \leq f^k(0) = f^{k+1}(0) \]
for a finite chain lattice.
This is tantamount to saying
\[\lim_{k \to \infty} f^k(0) \] exists and is called the **least fixed point** of \(f \),
since \(f(f^k(0)) = f^{k+1}(0) \)
\[k \to \infty \]

Fixed Point Theorem

Thm: \(f: S \to S \) monotonic function on poset \((S, \leq) \) with a 0 element and finite length. The least fixed point of \(f \) is \(f^k(0) \) where

i. \(f^0(x) = x \),
ii. \(f^{i+1}(x) = f(f^i(x)) \), \(i \geq 0 \),
iii. \(f^k(0) = f^{k+1}(0) \) and this is the smallest \(k \) for which this is true.

- For any \(p \) such that \(f(p) = p \), \(f^k(0) \leq p \).
- Theorem justifies the iterative algorithm for global data flow analysis for lattices & functions with right properties.
- Dual theorem exists for 1 element and maximal fixed point for \(k \) such that \(f^k(1) = f^{k+1}(1) \).
Reaching Definitions

• REACH meet operation is set union with partial order \(\supseteq \supset \) superset inclusion
 - Why? recall that the 0 element \(a \) is such that \(a \leq x = a, \forall x \) which means \(a \) is a superset of \(x! \)
• Defs = \{<node, var>\}, all defs in program
• 0 element Defs
• 1 element is \(\emptyset \)

How to solve? Worklist Algm

\[
\text{Reach}(j) = \bigcup \left\{ \text{Reach}(m) \cap \text{pres}(m) \cup \text{dgen}(m) \right\}
\]
\[
m \in \text{Pred}(j)
\]
Initialize all CFG nodes to \(\emptyset \).
Put all nodes on the worklist \(W \).
Loop: Do until \(W \) is empty{
 remove a node from the worklist \(W \);
 calculate righthandside of above eqn;
 compare result with \(\text{Reach}(j) \)
 if result is different, \{update \(\text{Reach}(j) \) and put descendent nodes of \(j \) on worklist \(W \}\}
}
//when terminates have correct reaching definitions solution at each node
Monotone Dataflow Frameworks

- Formalism for expressing and categorizing data flow problems (Kildall, POPL’73) \(<G, L, F, M> \)
 - \(G \), flowgraph \(<N, E, \rho> \)
 - \(L \), (semi-)lattice with meet \(\Lambda \)
 - usually assume \(L \) has a 0 and 1 element
 - finite chains
 - \(F \), function space, \(\forall f \in F, f: L \rightarrow L \)
 - Contains identity function
 - Closed under composition \(\forall f, g \in F, f \circ g \in F \)
 - Closed under pointwise meet, if \(h(x) = f(x) \land g(x) \) then \(h \in F \)
 - \(M : E \rightarrow F \), maps an edge to a corresponding transfer function that describes data flow effect of traversing that edge

Function Properties that Guarantee a Solution

- **Monotonicity**
 - Defined as \(x \leq y \Rightarrow f(x) \leq f(y) \).
 - Equivalent formulation of definition
 \(f(x \land y) \leq f(x) \land f(y) \)
- **Distributivity**
 - If \(f(x \land y) = f(x) \land f(y) \) then \(f \) **distributive**
 - Distributivity implies monotonicity
 - Four classical bitvector problems are distributive
Function Properties - Convergence

K-bounded: all contributions to MFP solution occur prior to Kth iteration

Fast: 1 pass around a cycle is enough to summarize its contribution to the dataflow solution (e.g., reflexive transitive closure is fast but not rapid)

Rapid: contribution of a cycle is independent of value at entry node; 1 pass around the cycle is enough. All classical bitvector problems are rapid

MOP vs MFP

- If *distributive* functions define the dataflow problem, to obtain dataflow solution at node n, can gather information on paths (e.g., P1, P2) simultaneously without loss of precision.
 - e.g., \(f_{P1}(0), f_{P2}(0) \) needn’t be calculated explicitly
- However, Kam and Ullman showed that this is not true for all *monotone* functions; Kam, Ullman, 1976, 1977
- Therefore, MFP only approximates MOP for general monotone functions that are not distributive.
Safety of Dataflow Solution

- **Safe solution** underestimates the actual dataflow solution; \(x \leq \text{MOP} \) is an approximate solution.
- **Acceptable solution** is one that contains a fixed point of the function, \(y \geq z \) where \(z \) is any fixed point.
- If they exist, **MOP** is the largest safe solution and **MFP** is the smallest acceptable solution.
- Between MFP and MOP are interesting solutions.

Diagram

```
Acceptable       Safe
    \text{MOP}  \quad \text{MFP}  \quad \text{1 element}

\text{MOP} \quad \text{MFP}
```

Reaching Definitions

- \(\emptyset \)
- \(\text{def}1 \)
- \(\text{def} k \)
- \(\{\text{def}1, \text{def}2\} \)
- \(\{\text{def}_{k-1}, \text{def} k\} \)
- \(\{\text{def}_1, ..., \text{def}_{k-1}\} \)
- \(\{\text{def}_2, ..., \text{def} k\} \)
- \(\text{Defs} \)
- \(\text{MOP} \)
- \(\text{MFP} \)

Safe solutions contain the MOP
Safe Solutions

- REACH: it is safe to err by saying a definition reaches when it DOES NOT REACH.
 - This may inhibit dead code elimination transformations
 - Since REACH functions are distributive, MOP=MFP here

Available Expressions

- An expression $X \text{ op } Y$ is available at program point n if EVERY path from program entry to n evaluates $X \text{ op } Y$, and after every evaluation prior to reaching n, there are NO subsequent assignments to X or Y.

Used to enable common subexpression elimination
Available Expressions Equations

\[\text{Avail}(j) = \cap \{ \text{Avail}(m) \cap \text{epres}(m) \cup \text{egen}(m) \} \]
\[m \in \text{Pred}(j) \]

where:
- \(\text{epres}(m) \) is the set of expressions preserved through node \(m \)
- \(\text{egen}(m) \) is the set of (downwards exposed) expressions generated at node \(m \)
- \(\text{pred}(j) \) is the set of immediate predecessors of node \(j \)

Available Expressions

\[
\text{meet} \text{ is } \cap
\]
\[
\{ \text{expr}_1, ..., \text{expr}_{(n-1)} \} \quad \cdots \quad \{ \text{expr}_n, ..., \text{expr}_2 \}
\]
\[
\vdots \quad \vdots \quad \vdots
\]
\[
\{ \text{expr}_1, \text{expr}_2 \} \quad \{ \text{expr}_2, \text{expr}_3 \} \quad \cdots \quad \{ \text{expr}_n, \text{expr}_{(n-1)} \}
\]
\[
\text{expr}_1 \quad \text{expr}_2 \quad \text{expr}_3 \quad \cdots \quad \text{expr}_n
\]
\[
\emptyset
\]
Safe Solutions

- **AVAIL**: it is safe to err by saying an expression is NOT AVAILABLE when it might be.
 - This may inhibit *common subexpression elimination* transformations
 - Since AVAIL functions are distributive, MOP=MFP here

How is analysis of OOPLs different?

- **Domain**: Java, C++, C# like languages

<table>
<thead>
<tr>
<th>Fortran:</th>
<th>OOPLs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed call structure</td>
<td>Dynamic dispatch</td>
</tr>
<tr>
<td>Limited polymorphism of primitive types</td>
<td>Polymorphism (i.e., subtyping)</td>
</tr>
<tr>
<td>Whole program analysis easy because all libraries necessary for compilation</td>
<td>Use of libraries and frameworks</td>
</tr>
<tr>
<td>Dynamic statements affecting execution (e.g., reflective calls, dynamic class loading)</td>
<td></td>
</tr>
</tbody>
</table>
Reference Analysis

- **Determines information about the set of objects to which a reference variable or field may point during program execution**
- An enabling analysis for OOPLs
 - Its precision affects precision of subsequent analysis clients (e.g., side effects)
 - Need to find the right cost/benefit tradeoff for particular problem

Reference Analysis

- **OOPLs need type information about objects to which reference variables can point to resolve dynamic dispatch**
- Often data accesses are indirect to object fields through a reference, so that the set of objects that might be accessed depends on which object that reference can refer at execution time
- Need to pose this as a compile-time program analysis with representations for reference variables/fields, objects and classes.
Reference Analysis enables...

- Construction of possible calling structure of program - call graph
 - Dynamic dispatch of methods based on runtime type of receiver: `x.f();`
- Understanding of possible dataflow in program
 - Indirect side effects through reference variables and fields `r.g`
- Uses of call graph
 - e.g., Program slicing, obtaining method coverage metrics for testing, heap optimization, etc

Uses of Reference Analysis Information in Software Tools

- Program understanding tools
 - Semantic browsers
 - Program slicers
- Software maintenance tools
 - Change impact analysis tools
- Testing tools
 - Coverage metrics
Analyses to be Discussed

• Lecture 2:
 - Type hierarchy-based reference analyses
 • CHA, RTA
 - Incorporating flow
 • FieldSens (Andersen-based points-to)

• Lecture 3:
 - Incorporating flow and calling context
 • 1-CFA
 • ObjSens (object-sensitive)
Monotonicity

\[f: L \to L \]
\[x \Lambda y \leq x \]
\[x \Lambda y \leq y \]
\[\text{by defn of meet of } \]
\[x, y; \text{ and} \]
\[f(x) \Lambda f(y) \leq f(x) \]
\[f(x) \Lambda f(y) \leq f(y) \]
\[\text{by defn of meet of } \]
\[f(x), f(y). \]

Therefore, \(x \leq y \Rightarrow f(x) \leq f(y) \) (1)

implies

\[f(x \Lambda y) \leq f(x) \Lambda f(y) \] (2).

Therefore, these definitions of monotonicity are equivalent.

Monotonicity, cont.

Show \(f(x \Lambda y) \leq f(x) \Lambda f(y) \) (2) implies \(x \leq y \Rightarrow f(x) \leq f(y) \) (1)

Then we know these two definitions of monotonicity are equivalent.

Assume \(x \leq y \). Then \(x \Lambda y = x \) by defn of meet.

\[f(x \Lambda y) = f(x) \leq f(x) \Lambda f(y) \]

which is given.

Then \(f(x) \Lambda (f(x) \Lambda f(y)) = f(x) \) by defn of meet.

But \((f(x) \Lambda f(x)) \Lambda f(y) = f(x) \Lambda f(y) = f(x) \) by associativity of meet

Therefore, \(f(x) \leq f(y) \) by defn of meet.

So (2) implies (1).

Therefore, these definitions of monotonicity are equivalent.
Available Expressions

- lattice is 2^{Exprs} where Exprs is set of all binary expressions in program
- Partial order is \subseteq (subset inclusion) so meet is \cap
- $\prec \text{Exprs,Exprs,\ldots,Exprs} \succ$ is 1 element
- $\prec \emptyset,\emptyset,\ldots,\emptyset \succ$ is 0 element
- From the data flow equations for AVAIL, we know that if a set of dataflow facts X is true on entry to a flowgraph node n, then $f(X)$ is true on each exit edge of n where
 \[f(X) = \text{epres}(n) \cap X \cup \text{egen}(n) \]
 f is called the \textit{transfer function} for AVAIL

Available Expresions

- Cross product lattice is
 \[(2^{\text{Exprs}}, 2^{\text{Exprs}}, \ldots, 2^{\text{Exprs}}) \]
 with n components where n is number of nodes in the cfg and \leq is component-wise
- Since Avail equation at a node can be expressed thusly,
 \[\text{Avail}(j) = \cap \{ \text{Avail}(m) \cap \text{epres}(m) \cup \text{egen}(m) \} \]
 $m \in \text{Pred}(j)$
 \[- \text{AVAIL} (j) \text{ is the solution at entry of node } j \text{ and } f(\text{AVAIL}(j))\text{ is solution at exit of node } j, \]
 \[g_j = \cap f(g_m), m \in \text{Pred}(j) \]
Available Expressions

• Can you show g_i monotone?

 $g_i : (\text{2Exprs}, \text{2Exprs}, \ldots, \text{2Exprs}) \rightarrow \text{2Exprs}$

• Then this induces the monotonicity of F,

 $F = (g_1, \ldots, g_n)$

• Application of dual of fixed point theorem here to find the maximal fixed point. Iterate down from the 1 element.

 - Initialize ρ to \emptyset, all other cfg nodes to Exprs.