
1

ACACES-2 July 2007 © BG Ryder 1

Advanced Program Analyses
for Object-oriented Systems

Dr. Barbara G. Ryder
Rutgers University

http://www.cs.rutgers.edu/~ryder
http://prolangs.rutgers.edu/

July 2007

ACACES-2 July 2007 © BG Ryder 2

Lecture 2 - Outline
• Type-based call graph construction
• Dimensions of analysis precision

– Properties and characterizations of an analysis
– Choices and consequences (precision & cost)

• Reference analysis of OO programs
• Points-to analyses

– Flow sensitivity, context sensitivity, field sensitivity
• Client analyses: Side effects, finding thread/method-

local objects, synchronization removal, efficient heap
layout

2

ACACES-2 July 2007 © BG Ryder 3

Running Example

static void main(){
B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

A

B

C D

cf Tip & Palsberg, OOPSLA’00

ACACES-2 July 2007 © BG Ryder 4

CHA Example

static void main(){
B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

Cone(Declared_type(receiver))

A

B

C D

cf Tip & Palsberg, OOPSLA’00

3

ACACES-2 July 2007 © BG Ryder 5

CHA Example - Call Graph
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}

class C extends B{
foo() {…}

}
class D extends B{

foo(){…}
}

main

A.foo() B.foo() C.foo() D.foo()

f(A) g(B)

Call Graph

cf Tip & Palsberg, OOPSLA’00

ACACES-2 July 2007 © BG Ryder 6

CHA Characteristics

• Ignores program flow
• Calculates types that a reference
variable can point to

• Uses 1 abstract reference variable
per class throughout program

• Uses 1 abstract object to represent
all possible instantiations of a class

J. Dean, D. Grove, C. Chambers, Optimization of OO Programs Using Static
Class Hierarchy, ECOOP’95

4

ACACES-2 July 2007 © BG Ryder 7

RTA Example

static void main(){
B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

A

B

C D

cf Tip & Palsberg, OOPSLA’00

ACACES-2 July 2007 © BG Ryder 8

RTA Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}

class B extends A{
foo() {…}

}
class C extends B{

foo() {…}
}

class D extends B{
foo(){…}

}

main

A.foo() B.foo() C.foo() D.foo()

f(A) g(B)

Call Graph

cf Tip & Palsberg, OOPSLA’00

5

ACACES-2 July 2007 © BG Ryder 9

RTA Characteristics

• Only analyzes methods reachable from main(),
on-the-fly

• Ignores classes which have not been
instantiated as possible receiver types

• Uses 1 abstract reference variable per class
throughout program

• Uses 1 abstract object to represent all
possible instantiations of a class

D. Bacon and P. Sweeney, “ Fast Static Analysis
 of C++ Virtual Function Calls”, OOPSLA’96

ACACES-2 July 2007 © BG Ryder 10

Experimental Comparison
C++ Programs

Bacon and Sweeney, OOPSLA’96

6

ACACES-2 July 2007 © BG Ryder 11

Data Characteristics

• Frequency of execution matters
– Direct calls were 51% of static call sites
but only 39%of dynamic calls

– Virtual calls were 21% of static call sites
but were 36% of dynamic calls

• Results they saw differed from previous
studies of C++ virtuals
– Stresses importance of benchmarks in
empirical work

Bacon and Sweeney, OOPSLA’96

ACACES-2 July 2007 © BG Ryder 12

Findings

• RTA was better than CHA on virtual function
resolution, but not on reducing code size
– Inference is that call graphs constructed have

same node set but not same edge set!
• Claim both algorithms cost about the same

because the dominant cost is traversing the
CFGs of methods and identifying call sites
– Implemented CHA with reachability calculation

• Claim that RTA is good enough for call graph
construction so that more precise analyses are
not necessary for this task

Bacon and Sweeney, OOPSLA’96

7

ACACES-2 July 2007 © BG Ryder 13

Type-based vs Flow-based
Reference Analysis

• Uses only class
hierarchy

• Same points-to set for
every reference of a
type

• Always flow- and
context- insensitive

• Inexpensive
• Okay for call graph

construction, but too
imprecise for some
other applications

• Uses reference assignments
• Distinguishes points-to sets

of different references of
same type

• Can be flow/context-
sensitive or insensitive

• May be expensive
• Related to points-to

approaches for C
• Okay for side-effect and

dependence calculations

ACACES-2 July 2007 © BG Ryder 14

Dimensions of Precision
• Independent characteristics of a
reference analysis which determines its
precision

• Different combinations of these
dimensions have already been explored
in algorithms

• Need to understand what choices are
available to design new analyses of
appropriate precision for clients

B.G. Ryder, “Dimensions of Precision in Reference Analysis of
Object-oriented Programming Languages”, CC 2003, pp 126-137.

8

ACACES-2 July 2007 © BG Ryder 15

Dimensions of Precision

1. Program representation - Call graph
– Use type-based approximation
– Lazy, on-the-fly construction

• Only explore methods which are statically
reachable from the main()

• Especially important for OOPLs use of libraries

ACACES-2 July 2007 © BG Ryder 16

Dimensions of Precision
2. Object Representation

– Use one abstract object per class
(CHA, RTA)

– Group object instantiations by creation
site

– Finer-grained object naming
3. Field Sensitivity

– May or may not distinguish fields of
objects; field-sensitive, field-based,
field-insensitive

9

ACACES-2 July 2007 © BG Ryder 17

Field Sensitivity

• Field-insensitive
– Does not distinguish between fields of an
abtract object

• Field-based
– Collapses all same-named fields into an
abstract representative

• Field-sensitive
– Distinguishes between different fields of an
abstract object

ACACES-2 July 2007 © BG Ryder 18

Spark Experiments

• Precision measure incorporated unreachable
dereferences and unique object reference
targets
– Precision of fb:fs was 57.7:60.0 on average
– Time cost was very similar
– Space cost of fb:fs was 86.6:138.4 on average

• Lesson learned: sometimes less precision is
okay - need to know the client of the points-
to info Lhotak and Hendren, “Scaling Java Points-to

Analysis Using SPARK”, CC’03

10

ACACES-2 July 2007 © BG Ryder 19

Dimensions of Precision

4. Reference representation
– Use one abstract reference per class
(CHA, RTA)

– Use one abstract reference for each class
per method (XTA)

– Represent reference variables or fields by
their names program-wide (FieldSens)

ACACES-2 July 2007 © BG Ryder 20

Dimensions of Precision

5. Flow sensitivity
– Analyses which capture the sequential order
of execution of program statements

1. A s,t;
2. s = new A();//o1
3. t = s;
4. s = new A();//o2

flow-sensitive:
at 2., s refers to o1
at 3., s,t refer to o1
at 4., s refers to o2
 t refers to o1
flow-insensitive:
s,t refer to {o1 o2}

11

ACACES-2 July 2007 © BG Ryder 21

Dimensions of Precision

6. Context sensitivity
– Analyses which distinguish different calling
contexts of the same method

– Differ by how they represent calling
context
• Call string
• Functional approach

– 1-CFA, example of call string approach
– ObjSens, example of functional approach

ACACES-2 July 2007 © BG Ryder 22

Dimensions of Precision

7. Directionality
– How flow in reference assignments (r=s) is
interpreted by the analysis
• Symmetric (Unification): r and s have same
points-to set after the assignment

• Directional (Inclusion): r’s points-to set includes
s’s points-to set after the assignment

12

ACACES-2 July 2007 © BG Ryder 23

Reference Analyses

• Vary according to the choices taken in
each of the dimensions

• Flow-based analyses based on ideas
from points-to analysis of C pointers

• XTA: a flow-based analysis close to
type-based analysis in cost, but with
better precision because it incorporates
flow of types into methods

ACACES-2 July 2007 © BG Ryder 24

XTA Analysis
• Calculates set of classes that reach a
method, incorporating (limited) flow

• Uses an on-the-fly constructed call
graph

• Uses one abstract object per class with
distinct fields (field-sensitive)

• Uses one abstract reference per class in
each method

Tip and Palsberg, “Scalable Propagation-based
Call Graph Construction Algorithms”, OOPSLA’00

13

ACACES-2 July 2007 © BG Ryder 25

Example of XTA
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

{A,B}

{B,C}

{A,B}

A

B

C D

cf Tip & Palsberg, OOPSLA’00

ACACES-2 July 2007 © BG Ryder 26

Java Program Dataset
cf Tip & Palsberg, OOPSLA’00

14

ACACES-2 July 2007 © BG Ryder 27

Findings

• Measures precision improvements over
RTA
– Given that reference r can point to an RTA-

calculated set of types program-wide, then XTA
reduces the size of this set by 88%, on average,
per method.

• The reachable methods set (i.e., call
graph nodes) is minimally reduced over
that of RTA

• The number of edges in the call graph is
significantly reduced by XTA over RTA
(.3%-29% fewer, 7% on average)

cf Tip & Palsberg, OOPSLA’00

ACACES-2 July 2007 © BG Ryder 28

Findings, cont.

• Data gives comparison restricted to those
calls that RTA found to be polymorphic and
how these analyses can improve on that
finding.
– Claim that the reduction in edges are for those

calls that RTA found to be polymorphic, and often
call sites become monomorphic after analysis

• Bottom line: Improved call graph construction

cf Tip & Palsberg, OOPSLA’00

15

ACACES-2 July 2007 © BG Ryder 29

Data of Findings
cf Tip & Palsberg, OOPSLA’00similar

better

ACACES-2 July 2007 © BG Ryder 30

Fully Incorporating Flow

• Need to incorporate intraprocedural flow
of data into and out of reference
variables (i.e., assignments)

• Model parameter / argument
associations as assignments

• FieldSens based on Andersen’s points-to
analysis for C
– Flow-insensitive, context-insensitive, field-
sensitive, inclusion constraints

16

ACACES-2 July 2007 © BG Ryder 31

Rules of Algorithm

• 4 types of reference assignment
statements with points-to effects
– Allocation: p=new X()

– Adds oX to Pts(p)

– Copy: p = q
– Pts(p) ⊇ Pts(q) (i.e., If o ∈Pts(q), then o ∈Pts(p))

– Field store: p.f = q
– If o∈Pts(p) and r ∈Pts(q), then r ∈ Pts(o.f)

– Field load: p = q.g
– If o ∈ Pts(q) and oo ∈ Pts(o.g) then oo ∈ Pts(p)

ACACES-2 July 2007 © BG Ryder 32

Points-to Graph

• Nodes represent reference variables and
fields, or objects

• Edges represent possible run-time
points-to relations

• Sometimes labeled with object field names

• Uses: call graph construction, side
effect analysis, memory optimizations

17

ACACES-2 July 2007 © BG Ryder 33

FieldSens Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

b3

oC

b1 oB

a1 oA

a2

b2

Points-to Graph
summarizes
reference/object
relationships

cf Tip & Palsberg, OOPSLA’00

ACACES-2 July 2007 © BG Ryder 34

FieldSens Example
static void main(){

B b1 = new B();
A a1 = new A();
f(b1);
g(b1);

}
static void f(A a2){

a2.foo();
}
static void g(B b2){

B b3 = b2;
b3 = new C();
b3.foo();

}

class A {
foo(){..}

}
class B extends A{

foo() {…}
}
class C extends B{

foo() {…}
}
class D extends B{

foo(){…}
}

a2 oB

b3 oC

oB

cf Tip & Palsberg, OOPSLA’00

18

ACACES-2 July 2007 © BG Ryder 35

FieldSens Characteristics
• Only analyzes methods reachable
from main()

• Keeps track of individual reference
variables and fields

• Groups objects by their creation site
• Incorporates reference value flow in
assignments and method calls

Rountev, A. Milnova, B. Ryder, “Points-to Analysis for
Java Using Annotated Constraints”, OOPSLA’00;

Lhotak and Hendren, “Scaling Java Points-to Analysis
using SPARK”, CC’03

ACACES-2 July 2007 © BG Ryder 36

Clients of FieldSens

• Devirtualization
• Side effect analysis

– What objects can have their values changed
through a reference assignment?

• Memory optimizations
– What objects can be stored on the stack
frame (local to a method, or thread)?

Rountev et. al, OOPSLA’00

19

ACACES-2 July 2007 © BG Ryder 37

Benchmarks Used
Rountev et. al, OOPSLA’00

ACACES-2 July 2007 © BG Ryder 38

Side Effect Analysis
Rountev et. al, OOPSLA’00

20

ACACES-2 July 2007 © BG Ryder 39

Devirtualization
FieldSens is blue
RTA is red

Rountev et. al, OOPSLA’00

ACACES-2 July 2007 © BG Ryder 40

Synchronization Removal

• Java library methods are often synchronized
for use in multi-threaded applications

• If program is single-threaded or threads do
not share data, then this is unnecessary
– Use escape analysis to find objects which escape

the thread that creates them
• If none found, then no need for synchronization

– Can use results of points-to analysis to estimate
objects that escape a method or thread

21

ACACES-2 July 2007 © BG Ryder 41

Thread-local & method-local
 new sites

Rountev et. al, OOPSLA’00

ACACES-2 July 2007 © BG Ryder 42

Run-time Payoff
Rountev et. al, OOPSLA’00

22

ACACES-2 July 2007 © BG Ryder 43

Imprecision of Context
Insensitivity

class Y extends X{ … }

class A{
 X f;
 void m(X q)
 { this.f=q;}

}

A a = new A();//o1
a.m(new X());//o2
A aa = new A();//o3
aa.m(new Y());//o4

a o1 o2

aa o3 o4

thisA.m q

f

f

