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Lecture 2 - Outline

- Type-based call graph construction

- Dimensions of analysis precision
- Properties and characterizations of an analysis
- Choices and consequences (precision & cost)

- Reference analysis of OO programs
* Points-to analyses
- Flow sensitivity, context sensitivity, field sensitivity
+ Client analyses: Side effects, finding thread/method-

local objects, synchronization removal, efficient heap
layout
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Running Example

cf Tip & Palsberg, OOPSLA'00

static void main(){ class A {
B bl = new B(); foo(){.-.}
A al = new A(); } A
f(bi); class B extends A{
} g(bl); y foo() {..} T
static voidM} B
class C extends B{
a2.foo();
J’ foo() {..} /4\
static void g (B b2){ } C D
B b3 = b2; class D extends B{
b3 = new C(); foo(){..}
b3.foo ()% }
}
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CHA Examgle

cf Tip & Palsberg, OOPSLA'00

-~ T=9¢glass A {

static void main(){ !
foo(){..}

B bl = new B(); !
A al = new A(); 1 }

1

: foo() {..}

A

f(bl); _y,_Class B extends A{
g(b1); \ T
} I, } B

static void f(J 2 ,:/ lass C extends B{
a2.foo(); \\::—‘—"—’7 —# == foo() {.} /
} \\\4/ } C D
static void g(B b2){ , ~/4_ class D extends B{
—_ . / S o
B b3 = b2; _-7Y "% foo(){.}
b3 = new C(l ~
b3.foo(); T }
’ Cone(Declared_type(receiver))
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CHA Example - Call Graph

cf Tip & Palsberg, OOPSLA'00

main

(A o®)

W
14

Afon) Bfos) Cfool) D.fool)

Call Graph
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CHA Characteristics

- Ignores program flow

Calculates types that a reference
variable can point to

- Uses 1 abstract reference variable
per class throughout program

Uses 1 abstract object to represent
all possible instantiations of a class

J. Dean, D. Grove, C. Chambers, Optimization of OO Programs Using Static
Class Hierarchy, ECOOP'95
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RTA Example

cf Tip & Palsberg, OOPSLA'00

static void main(){ -~ =~_class A {
B bl = new B(); !

£ .o
A al = new A(); } °O{--}

I
1
f(b1); |l 1 B tends A :
g(bl); \ | class B extends A{
} | foo() {..}
B

static void f(A a2) }

a2.foo() ST 7 7 lass C extends B{
~ == - wa
} e —> foo() {..}
tati id g(B b2 /
static void g( ){ , } C D
B b3 = b2; ’ class D extends B{
b3 = new C(); S foo(){..}
b3.foo(); }
}
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RTA Example

cf Tip & Palsberg, OOPSLA'00

static void main(){ ¢class A {
B bl = new B(); foo(){..}
A al = new A(); }
f(bl); class B extends A{
g(bl); foo() {..}
}
static void £(A a2){ ;1555 ¢ extends B{
} a2.foo(); £00() {.} g(B)
static void g(B b2){ }
B b3 = b2; class D extends B{
b3 = new C(); foo(){.}
b3.foo(); } " v
}

A.foo() B.foo() C.foo() D.foo()
Call Graph
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RTA Characteristics

* Only analyzes methods reachable from main(),

on-the-fly

- Ignores classes which have not been
instantiated as possible receiver types

* Uses 1 abstract reference variable per class

throughout program

* Uses 1 abstract object to represent all
possible instantiations of a class

D. Bacon and P. Sweeney, " Fast Static Analysis
of C++ Virtual Function Calls”, OOPSLA'96
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Experimental Comparison

C++ Programs

Bacon and Sweeney, OOPSLA'96

| Benchmark | TLines [ Description

sched 5,712

RS/6000 Instruction Timing Simulator

ixx 11,157

IDL specification to C++ stub-code translator

lcom 17,278 | Compiler for the “L” hardware description language
hotwire 5,335 | Scriptable graphical presentation builder

simulate 6,672 | Simula-like simulation class library and example

idl 30,288 | SunSoft IDL compiler with demo back end

taldict 11,854 | Taligent dictionary benchmark

deltablue 1,250 | Incremental dataflow constraint solver

richards 606

| Simple operating system simulator

Table 1: Benchmark Programs. Size is given in non-blank lines of code
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Data Characteristics
Bacon and Sweeney, OOPSLA'96

- Frequency of execution matters

- Direct calls were 51% of static call sites
but only 39%of dynamic calls

- Virtual calls were 21% of static call sites
but were 36% of dynamic calls

- Results they saw differed from previous
studies of C++ virtuals

- Stresses importance of benchmarks in
empirical work
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Findings

Bacon and Sweeney, OOPSLA'96

* RTA was better than CHA on virtual function
resolution, but not on reducing code size
- Inference is that call graphs constructed have

same node set but not same edge set!

* Claim both algorithms cost about the same
because the dominant cost is traversing the
CFGs of methods and identifying call sites
- Implemented CHA with reachability calculation

* Claim that RTA is good enough for call graph
construction so that more precise analyses are
not necessary for this task
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Type-based vs Flow-based

Reference Analysus
- Uses only class Uses reference assignments

Distinguishes points-to sets
h‘eramh\_/ of dif%erent r‘:aferences of
+ Same points-to set for same type
every reference of a . Can be flow/context-
type sensitive or insensitive
+ Always flow- and * May be expensive
context- insensitive * Related to points-to

approaches for C

* Inexpensive * Okay for side-effect and
+ Okay for call graph dependence calculations

construction, but too
imprecise for some
other applications

ACACES-2 July 2007 © BG Ryder
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Dimensions of Precision

* Independent characteristics of a
reference analysis which determines its
precision

- Different combinations of these
dimensions have already been explored
in algorithms

* Need to understand what choices are
available to design new analyses of
appropriate precision for clients

B.G. Ryder, "Dimensions of Precision in Reference Analysis of

Object-oriented Programming Languages", CC 2003, pp 126-137.
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Dimensions of Precision

1. Program representation - Call graph
- Use type-based approximation

- Lazy, on-the-fly construction

* Only explore methods which are statically
reachable from the main()

+ Especially important for OOPLs use of libraries

ACACES-2 July 2007 © BG Ryder
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Dimensions of Precision

2. Object Representation
- Use one abstract object per class
(CHA, RTA)
- 6roup object instantiations by creation
site
- Finer-grained object naming
3. Field Sensitivity

- May or may not distinguish fields of
objects; field-sensitive, field-based,
field-insensitive

ACACES-2 July 2007 © BG Ryder
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Field Sensitivity

- Field-insensitive
- Does not distinguish between fields of an
abtract object

- Field-based

- Collapses all same-named fields into an
abstract representative

- Field-sensitive

- Distinguishes between different fields of an
abstract object

PROLANGS
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Spark Experiments

* Precision measure incorporated unreachable
dereferences and unique object reference
targets
- Precision of fb:fs was 57.7:60.0 on average
- Time cost was very similar
- Space cost of fb:fs was 86.6:138.4 on average

* Lesson learned: sometimes less precision is
okay - need to know the client of the points-

to info Lhotak and Hendren, “Scaling Java Points-to
Analysis Using SPARK", €C'03
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Dimensions of Precision

4. Reference representation
- Use one abstract reference per class
(CHA, RTA)
- Use one abstract reference for each class
per method (XTA)

- Represent reference variables or fields by
their names program-wide (FieldSens)

ACACES-2 July 2007 © BG Ryder
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Dimensions of Precision

5. Flow sensitivity

- Analyses which capture the sequential order
of execution of program statements

flow-sensitive:

;' A f’:’l; aCYs// at 2., s refers to 0,
- S ew A()i//o, at 3., s,t refer to 0,

3. t = s;

4 - a):// at 4., s refers to o,
- S W AQ /7% 4 refers to o,

flow-insensitive:
s,t refer to {0, 0,}

ACACES-2 July 2007 © BG Ryder 20
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Dimensions of Precision

6. Context sensitivity

- Analyses which distinguish different calling
contexts of the same method

- Differ by how they represent calling
context
* Call string
* Functional approach
- 1-CFA, example of call string approach

- ObjSens, example of functional approach

ACACES-2 July 2007 © BG Ryder
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Dimensions of Precision

7. Directionality

- How flow in reference assignments (r=s) is
interpreted by the analysis
+ Symmetric (Unification): r and s have same
points-to set after the assignment

* Directional (Inclusion): r's points-to set includes
s's points-to set after the assignment

ACACES-2 July 2007 © BG Ryder
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Reference Analyses

- Vary according to the choices taken in
each of the dimensions

* Flow-based analyses based on ideas
from points-to analysis of C pointers

+ XTA: a flow-based analysis close to
type-based analysis in cost, but with
better precision because it incorporates
flow of types into methods

ACACES-2 July 2007 © BG Ryder RUTGERS
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XTA Analysis
Calculates set of classes that reach a
method, incorporating (limited) flow
Uses an on-the-fly constructed call
graph
Uses one abstract object per class with
distinct fields (field-sensitive)

Uses one abstract reference per class in
each method

Tip and Palsberg, "Scalable Propagation-based
Call Graph Construction Algorithms”, OOPSLA'00
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Example of XTA

{A,B} cf Tip & Palsberg, OOPSLA'00
static void main(){ _ class A {
B bl = new B(); " T f00(){..}
A al = new A(); : }
. A
f(:i)’ ', class B extends A{
R {AB} | _— £00() {.} T
static void f(A a2 } B
a2.foo(); == class C extends B{ \
} {B,C} _-% foo() {.} /
static void g(B b2) } C D
B b3 = b2; / class D extends B{
b3 = new C(); / foo(){..}
b3.foo () i~ }
}
ACACES-2 July 2007 © BG Ryder RIUTGERS 25
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Java Program Dataset

cf Tip & Palsberg, OOPSLA'00

benchmark | #cl # methods | #fields (reference-typed) # virtual call sites
Hanoi 44 379 232 (107) 285
Ice Browser 76 761 500 (2583) 922
mBird 2,050 17,9486 6739 (4284) 3,269
Cindy 468 4,449 3075 (1677) 5,085
CindyApplet 468 4,449 3075 (1677) 2,502
eSuite Sheet 588 5,590 4305 (1412) 4459
eSuite Chart 733 8,302 5448 (2141) 8,074
javaFig 1.43 161 2,108 1526 (971) 3.482
BLOAT 282 2,677 1255 (541) 6,623
JAX 6.3 309 2,754 1252 (579) 3,836
javac 210 1,512 1107 (406) 3,621
Res. System 2332 21,495 12487 (6334) 23.640

TE STATE ONIVERSITY OF NEW JERSEY
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Findings
cf Tip & Palsberg, OOPSLA'00
. @Fasures precision improvements over
A

- Given that reference r can point to an RTA-
calculated set of types program-wide, then XTA
reduces the size of this set by 88%, on average,
per method.

* The reachable methods set (i.e., call
graph nodes) is minimally reduced over

hat of RTA

 The number of edges in the call graph is
significanﬂy reduced by XTA over RTA
(.3%-29% fewer, 7% on average)

PROLANGS
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Findings, cont.
cf Tip & Palsberg, OOPSLA'00

- Data gives comparison restricted to those
calls that RTA found to be polymorphic and
how these analyses can improve on that
finding.

- Claim that the reduction in edges are for those

calls that RTA found to be polymorphic, and often
call sites become monomorphic after analysis

+ Bottom line: Improved call graph construction

ACACES-2 July 2007 © BG Ryder 28
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Data of Findings

cf Tip & Palsberg, OOPSLA'00

similar
ﬂ; better
benchmark RTA ﬂ ﬂ XTA
uneached nono poly unreac had mono poly
Hanoi 340% 616% 4.4% 340% 627% 3.3%
Ice Browser 405 914% 47% 40% 916% 4.5%
m8ird 142% 73.4% 123% 174% 709% 11.7%
Cindy 49.3% 45.0% S7% 49 4% 455% 5.0°¢

CindyApplet 72.0% 246% 34%| 723% 245% @ 3.2%
eSute Sheet | 2815 6B4% 35%| 282% 691% 28%
eSuite Chart 13.3% 766% 101%| 157% 760%  B.3%

javaFig 1.43 91% B7.1% 38% 9.7% 872% 3.1%
BLOAT 6.6% B24% 11.1% 7FO0% 822% 10.8%
JAXE3 18.7% 759% S4% 188% 7685% 4.3%
javac 308 T76% 194% 30% 77.7% 19.3%
Res. System 18.1% 720% 98% 182% 740%  7.9%
AVERAGE 7.8% 7.0°%
ACACES-2 July 2007 © BG Ryder TRNE Simlwlwé';ﬁiigm 29
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Fully Incorporating Flow

* Need to incorporate intraprocedural flow
of data into and out of reference
variables (i.e., assignments)

* Model parameter / argument
associations as assignments

- FieldSens based on Andersen's points-to
analysis for C

- Flow-insensitive, context-insensitive, field-
sensitive, inclusion constraints

ACACES-2 July 2007 © BG Ryder 30
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Rules of Algorithm

* 4 types of reference assignment
statements with points-to effects

- Allocation: p=new X()
- Adds oy to Pts(p)
- Copy: p = q
- Pts(p) 2 Pts(q) (i.e., If o €Pts(q), then o EPts(p))
- Field store: p.f = g
- If oPts(p) and r €Pts(q), then r € Pts(o.f)
- Field load: p = q.g

- If o € Pts(q) and oo € Pts(0.g) then oo € Pts(p)

PROLANGS
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Points-to Graph

* Nodes represent reference variables and

fields, or objects

- Edges represent possible run-time
points-to relations
+ Sometimes labeled with object field names

* Uses: call graph construction, side

effect analysis, memory optimizations

PROLANGS
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FieldSens Example

static void main(){
B bl = new B();
A al = new A();
f(bl);
g(bl);

}

static void f(A a2){
a2.foo();

}

static void g(B b2){
B b3 = b2;
b3 = new C();
b3.foo();

ACACES-2 July 2007 © BG Ryder
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cf Tip & Palsberg, OOPSLA'00

al_____ , o0,

b2 b3

Points-to Graph
summarizes
reference/object

. . Oc
relationships

33

FieldSens Example

static void main(){

class A {
B bl = new B(); foo(){..}
A al = new A(); }
£(b1); lass B extends A
g(bl); a2 O class extends A{
} Py foo() {..}
/
static void f(A a2){ /i }
a2.foo(); class C extends B{
} , foo() {..}
»static void g(B b2){, }
B b3 = b2; /) class D extends B{
b3 = new C(); _- foo(){..}

b3.foo(); -~

ACACES-2 July 2007 © BG Ryder

cf Tip & Palsberg, OOPSLA'00

b3— o,

Op 34
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FieldSens Characteristics
* Only analyzes methods reachable
from main()

Keeps track of individual reference
variables and fields

* Groups objects by their creation site

* Incorporates reference value flow in
assignments and method calls

Rountev, A. Milnova, B. Ryder, "Points-to Analysis for
Java Using Annotated Constraints”, OOPSLA'00;

Lhotak and Hendren, “Scaling Java Points-to Analysis
using SPARK", CC'03

ACACES-2 July 2007 © BG Ryder 35
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Clients of FieldSens

Rountev et. al, OOPSLA'00

- Devirtualization

- Side effect analysis

- What objects can have their values changed
through a reference assignment?

- Memory optimizations

- What objects can be stored on the stack
frame (local to a method, or thread)?

ACACES-2 July 2007 © BG Ryder 36
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Benchmarks Used

Rountev et.

Program User Size \Whole-program
Class (Kb) ss | Method Stmt
Proxy 18 56.6 3283 58837
compress 22 76.7 60010
db 14 70.7 35 60747
jb-6.1 21 35.6 574 60898
echo L7 66.7 577 62646
raytrace 35 115.9 H82 62755
mtrt 35 115.9 582 62760
tar-1.2 G4 185.2 618 65112
lex- 25 95.1 578 65437
avacup-0.10 33 3 81 66463
rabbit-2 52 7.4 615 68277
ack 67 5 613 69249
flex-1.2.2 54 2 GOS8 71198
ess 160 2 715 71207
mpegaudio 62 .8 608 71712
jitree-1.0 72 .0 620 79587
sablecc-2.9 312 4 864 82418
javac 182 4.7 730 82947
creature 65 9.7 626 83454
mindterml1.1.5 120 461.1 636 90451
soot-1.beta.4 677 | 1070.4 1214 92521
muffin-0.9.2 245 655.2 824 94030
javacc-1.0 63 502.6 615 102986

ACACES-2 July 2007 © BG Ryder
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al, OOPSLA'00
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Percentage of all indirect accesses

Axoad
sa1dwod
oesjhed

]
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Rountev et. al, OOPSLA'00
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Rountev et. al, OOPSLA'00
Devirtualization

RTA is red

ACACES-2 July 2007 © BG Ryder RUTGERS G 39
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Synchronization Removal

+ Java library methods are often synchronized
for use in multi-threaded applications

- If program is single-threaded or threads do
not share data, then this is unnecessary

- Use escape analysis to find objects which escape
the thread that creates them
* If none found, then no need for synchronization
- Can use results of points-to analysis to estimate
objects that escape a method or thread

ACACES-2 July 2007 © BG Ryder RUTGERS 40
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Thread-local & method-local

new sites
Rountev et. al, OOPSLA'00

(a) Object allocation sites

0% Thread-local 8% Method-local
70
60
50
40
30
20
10
0
£ = g " g "S5 522 85387 2 3
s g = g - I -
E
ACACES-2 July 2007 © BG Ryder T—isi“ |UN Iwcs.lmoﬁgﬁgm 41
Run-time Payoff
Rountev et. al, OOPSLA'00
(b) Run-time objects
Program Objects | Thread-local | Method-local
compress 456 99.3% 39.0%
db 154325 0.03% 0.01%
mtrt 6457298 99.9% 85.0%
jlex 7350 50.9% 31.6%
jack 1340919 86.7% 77.0%
jess 7902221 17.9% 17.9%
mpegaudio 2025 12.4% 12.4%
sablecc 420494 24.9% 13.7%
javac 3T38TTT 27.6% 21.2%
javacc 13265 65.7% 45.8%
ACACES-2 July 2007 © BG Ryder ﬁnwnwwiigy 42
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Imprecision of Context

Insensitivity
class Y extends X{ .. }
f
class A{ a 0. —%o
X £f; - < 2
Void m(x q) / \\ II \
\
'l:h.'i.SA m ‘\/I
} ’ "\
\
A a = new A();//o, \ KN
a.m(new X());//o, ‘II £ \\
A aa = new A();//o; aa—» 0, —> 0
aa.m(new Y());//o,
ACACES-2 July 2007 © BG Ryder T—isi“ |UN Iwcs.lmiwkgw
PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

43

22



