Advanced Program Analyses
for Object-oriented Systems

Dr. Barbara 6. Ryder
Rutgers University
http://www.cs.rutgers.edu/~ryder

http://prolangs.rutgers.edu/
July 2007

ACACES-3 July 2007 © BG Ryder RUTGERS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

Lecture 3 - Outline

- Context-sensitive reference analysis
- K-CFA vs. Object-sensitive analysis
- Clients: run-time cast check removal, side effect
analysis
- Dealing with the ‘closed world’
assumption
- Modeling libraries
- Incremental points-to analysis

* Dynamic analysis for Feedback-
directed Optimization (FDO)

ACACES-3 July 2007 © BG Ryder RUTGERS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

Imprecision of
Context-insensitive Analysis

* Does not distinguish contexts for instance
methods and constructors
- States of distinct objects are merged
- Common OOPL features and idioms result in
imprecision
- Encapsulation
- set() method conflates all instances with same field

- Inheritance

+ Initialized fields in superclass constructor conflates points-to
sets of subclass objects created

- Containers, maps and iterators
+ Same creation site results in apparent unioning of all contents

ACACES-3 July 2007 © BG Ryder 3

Example: Imprecision

class Y extends X { ... }

class A {
X f;

e

h

A a = new Aéz ;
a.seﬂ(knew ;

A aa = new AE;
aa.setf(new Y()) ;

h

ACACES-3 July 2007 © BG Ryder

PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

Example - Imprecision
class X {void n(){}}
class Y extends X{ void n(){}}
class Z extends X{ void n(){}}
class A { X £;
A(X xa) {this.f = xa;}} What is target of the red call?
Class B extends A{ What is the target of the
B(X xb) {super(xb);..} blue CG"?
void m() {
X xb = this.f; xb.n();}}
Class C extends A{
C(X xc) {super(xc);..}
void m() {
X xc = this.f; xc.n();}}
//in main ()

{Yy=new ¥Y(); Z z = new Z();

B b = new B(y); C ¢ = new C(z);

b.m(); c.m();

JCACESAS July 2007 © BG Ryder T—iigl“ IUN I‘EMGWOFEN“R%Ey 5
PROLANGS

uuuuuuuu MING LANGUAGES RESEARON GROU®.

Context Sensitivity

- Keeping calling contexts distinct during
the analysis

* Classically two approaches
- Call string - distinguish analysis result by
(truncated) call stack on which it is obtained
- e.g., K-CFA
- Functional - distinguish analysis result by (partial)
program state at call
- e.g., receiver identity, argument types

M. Sharir, A. Pneuli, "Two Approaches to Interprocedural
Dataflow Analysis”. Ch 7 in Program Flow Analysis,
Edited by S. Muchnick, N. Jones, Prentice-Hall 1981

ACACES-3 July 2007 © BG Ryder

1-CFA
* Calling context is tail of call string
(1-CFA is last call site)

static void main(){ €l a4
B bl = new B();//0, bl— 0 C3
A al = new A();//0, ‘\\\\\
A a2,a3; al____ , o0, a2
Cl: a2 = f£(bl); /f
C2: a2.foo();
Cc3: a3 = f(al); a3

C4: a3.foo();

}
public static A f(A a4){return a4;}

Points-to Graph

at €2, main calls B.foo()
at C4, main calls A.foo()

ACACES-3 July 2007 © BG Ryder

1-CFA Characteristics

« Call-string approach to context sensitivity
* Only analyzes methods reachable from main()

* Keeps track of individual reference variables
and fields

* Groups objects by their creation site

* Incorporates reference value flow in
assignments and method calls

- Differentiates points-to relations for
different calling contexts

ACACES-3 July 2007 © BG Ryder

Object-sensitive Analysis (ObjSens)

- Receiver objects used as calling
context

- Instance methods and constructors
analyzed for different contexts

* Multiple copies of local reference
variables

0,
this.f=q = this1.f=q°1
ACACES-3 July 2007 © BG Ryder TRME Simlwlwmdﬁﬁgm 9
PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

Example: Object-sensitive Analysis

class A { f
x f- a 01 - 02
void m(X q) { N

this)3.f=q%3; } [thisy., q’!
by

Aa=newA(); this, q”

a.m(new X()) ; \

A aa = new A() ;

aa.m(new Y()) ; Aa 03 [§ " 0,4

ACACES-3 Ty 2007 © 86 Ryer RUTGERS 0

PROGRAMMNG LANGUAGES RESEARCH GROUP.

ObjSens Analysis
Based on Andersen's points-to for C

Uses receiver object to distinguish
different calling contexts

Groups objects by creation sites

Represents reference variables and
fields by name program-wide

Flow-insensitive, context-sensitive,
field-sensitive

Milanova, A. Rountev, B. 6. Ryder, "Practical Points-to Analyses
for Java”, ISSTA'02;"Parameterized Object Sensitivity for
Points-to Analysis for Java“, TOSEM, Jan 2005

ACACES-3 July 2007 © BG Ryder RUTGERS
PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

Side-effect Analysis:
Modified Objects Per Statement

Milanova et.al, ISSTA'02

jb jess sablecc raytrace Average
HOne 0OTwoorthree [Fourtonine H More than nine

ACACES-3 July 2007 © BG Ryder RUTGERS
PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

Side Effect Analysis Comparison

Milanova, et. al TOSEMO5

90% -
Percentage of write statements
reporting number of objects shown, 78%

80% . N -
on average, as experiencing side effects.

72%

70%

60%

50%

40%

30%

20%

10%

0%

2
ACACES-3 July 2007 © BG Ryder 9

Comparison ObjSens vs 1-CFA

* The call string and functional
approaches to context sensitivity are
incomparablel!

* Neither is more powerful than the
other

- Recent papers cite ObjSens as better
on clients: race detection and cast

check elimination (aiken et. al, PLDI'06; Lhotak &
Hendren, CC'06)

ACACES-3 July 2007 © BG Ryder

PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

1-CFA more precise than ObjSens

static void main(){ 1-CFA
D dl1 = new D(); A
if (..)Cl: (dl.f(new B())).g();
else C2: (dl.f(new C())).g(); /T\
} B Ccobp
public class D g0 g0 f(A)
{ public A f£(A al){return al;}
}
thisDN Op ‘>\C\ a1
di % C2 ret,
. / /
this, ¢/c, Oc
ACACES-3 July 2007 © BG Ryder 15
1-CFA more precise than ObjSens
static void main(){ 1-CFA

D dl1 = new D();

if (..)Cl: (dl.f(new B())).g(); T

clae’ c2: (@1 5(nan €0)) 9007 | LA Sotaushes the
} . at C1 and C2;

public class D At C1, B.g() called;

{ public A £(A al){return al;} |a¢ €2, C.g() called;

}
thian. o "\C\ 1
a

______,o0
di g C2 ret, ;
_ -

this; ¢/c, O¢

TE S TATE NIVERSITY OF NEW JERSeY
ACACES-3 July 2007 © BG Ryder RUTGERS
PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

1-CFA more precise than ObjSens

static void main(){ .
D dl1 = new D(); A ObJSens
if (..)Cl: (dl.f(new B())).g();
else C2: (dl.f(mew C())).g(); /f TK\
} B C D
public class D g0 g0 f(A)
{ public A f(A al){return al;}
}

this o
OB B"\\ al
dl:::::::::z:on

ACACES-3 July 2007 © BG Ryder

1-CFA more precise than ObjSens
ObjSens

static void main(){
D dl1 = new D();
if (..)Cl: (dl.f(new B())).g(); ObjSens groups the two
else C2: (dl.f(new C())).g(); calling contexts of D.f
} with the same receiver
at C1 and C2;
Both B.g(),C.g() are
called at C1 and C2;

public class D
{ public A f(A al){return al;}

}

this o

dl——— %

TE S TATE NIVERSITY OF NEW JERSeY
ACACES-3 July 2007 © BG Ryder RUTGERS
PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

ObjSens more precise than

public class A

{ X xx; I‘CFA

A (X xa){ this.xx=xa;} X 0O A
: /X
public class B extends A T
{ B (X xb){C3: super(xb);} Y Z B
public X £() {return this.xx;} g0 g0 ()
static void main(){ .
X x1,x2; ObjSens

Cl: B bl = new B(new Y());//0Og,

C2: B b2 new B(new Z());//0g,
this;,

f"——ﬂﬂd’:::;--“" Xag;

XX
bl —— 0y, 2% o xby,
XX / xaBz
> < xb
b2 — o,, o, P82
Y~ this,,
ACACES-3 July 2007 © BG Ryder RUTGERS 19
PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

ObjSens more precise than
public class A I-CFA
{ X xx;

X 0 A
A (X xa){ this.xx=xa;} / < T
}
V/

public class B extends A Y B
{ B (X xb){C3: super(xb);} g() g() f()
public X f() {return this.xx;}

static void main(){ this
X x1,x2; £.B XX
Cl: B bl = new B(new Y());//oy, bl > Op; Oy
C2: B b2 = new B(new Z());//o, ///////////’
x1=bl.f(); x1 xx
C4: Xllg(); b2 .OBZ—> oz
x2=b2.£(); P
C5: x2.9(); ObjSens this; ,, /
} x2

ACACES-3 July 2007 © BG Ryder 20

10

ObjSens more precise than
public class A I-CFA

{ X xx;

X 0 A
A (X xa){ this.xx=xa;} / < T
}
V/

public class B extends A Y B

{ B (X xb){C3: super(xb);} g() g() f()
public X f() {return this.xx;}
static void main(){

X x1,x2;
Cl: B bl = new B(new ¥());//o ; ;
C2: B b2 = new B(new Z());//oz: ObjSens finds
x1=bl.£(); C4 calls Y.g() and
Cd: x1.9(); C5 calls Z.g()
x2=b2.£();

C5: x2.g();
}

ACACES-3 July 2007 © BG Ryder 21

RUTGERS
PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

ObjSens more precise than
public class A I-CFA

{ X xx; X 0 A
A (X xa){ this.xx=xa;} / T

}}_;ublic class B extends A Y Z

{ B (X xb){C3: super(xb);} g0 g0 t0

public X f() {return this.xx;}

static void main(){ 1-CFA
X x1,x2;
Cl: B bl = new B(new Y());//0Og,
C2: B b2 = new B(new 2());//0Og,
this_,
bl— o5, -~ oy«— Xxb
xac3
b b,

ACACES-3 July 2007 © BG Ryder 22

11

ObjSens more precise than
1-CFA

public class A

{ X xx; X () A
A (X xa){ this.xx=xa;} / < T

}

public class B extends A Y Z B

{ B (X xb){C3: super(xb);} g0 g0 fO
public X f() {return this.xx;}
static void main(){ I-CFA

X x1,x2;

Cl: B bl = new B(new Y());//o,
C2: B b2 = new B(new Z());//og,
x1=bl.£f();

. o XX
C4: x1.9(); bl——0, ---"7-- > 0oy
x2=b2.£(); oy S x1
C5: x2.9(); XX T><l_ x2
} XX T
b2 > Op2 XX o,
ACACES-3 July 2007 © BG Ryder ﬁnwns‘ EN%Y 23

PROGRAMMNG LANGUAGES RESEARCH GROUP.

ObjSens more precise than
1-CFA

public class A

{ X xx; X () A
A (X xa){ this.xx=xa;} / T

}

public class B extends A Y Z B

{ B (X xb){c3: super(xb);} g() g() f()

public X f() {return this.xx;}
static void main(){

X x1,x2;

Cl: B bl = new B(new Y());//oy,

2: B b2 = i//0, .
c xf=b1.f(x;e;w B(new Z());//og, 1-CFA fmds
ca: x1.9(); C4 calls Y.g(), Z.g() and
x2=b2.£(); C5 calls Y.9(), Z.9()
C5: x2.g();
}
ACACES-3 July 2007 © BG Ryder ﬁnwaﬁw]i? 24
PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

12

Empirical Comparisons ccoe

* Reports on a comparison of 4 different
context-sensitive analyses
- Run on same 16 benchmarks
- Implemented on the same framework (JEDD in Soot)
- Combined with context-sensitive object naming schemes

- Effectiveness measured on devirtualization, redundant
cast removal, call graph size

* Bottom line: object-sensitive analysis
shown to be superior, in terms of
scalability and precision, on points-to
analysis and cast elimination

“Context-sensitive analysis - Is it worth it?”,
O. Lhotak, L. Hendren, CC'06

REE

TE S TATE NIVERSITY OF NEW JERSeY
ACACES-3 July 2007 © BG Ryder RUTGE 25
PROL,

Context-sensitive Points-to
Algorithms in Study

Lhotak & Hendren, CC'06

* Informal algorithm is flow- and context-insensitive

Call-site-string-based uses a string of the k most
recent actual call sites on the runtime stack as the
‘calling context’

Receiver object-based (object-sensitive) uses the

sequence of the k most recent receiver objects as
the ‘calling context’

Cloning-based (with BDDs) actually makes one copy

per method instantiation

- Corresponding to call edges that DO NOT participate in a cycle in
the context-insensitive call graph (ZCWL, PLDI'04)

AL

W
PROLANGS

yyyyyy MING LANGUAGES RESEARON GROU®.

ACACES-3 July 2007 © BG Ryder 26

13

Questions to answer
Lhotak & Hendren, CC'06

1. Which contexts are actually useful to improve
analysis precision?
* How often contexts have identical points-to info?
+ How much context can be saved for practical cost?
+ Does more context help precision?
2. Why can BBDs do so well in representing large
numbers of contexts?
* How poorly would non-BDD representations do for
context-sensitive analyses?
3. How well do the algorithms do on client problems?

* Call graph construction, devirtualization, unnecessary
cast elimination

TE STATE ONIVERSITY OF NEW JERSEY

ACACES-3 July 2007 © BG Ryder RUTGERS 27

Findings - #Equiv Contexts

Lhotak & Hendren, CC'06

____object-sensitive —gall site

Benchmark | insens. 1 2 3 1H 1 2 1H | ZCWL
compress 2597 | (84 99 113 1212439 49 33
do 2614 | (85| 99 114 1212439 50 33
jack 2870 | (86| 102 116 1192439 50 34
javac 3781 | 104 | 17.7 338 1432753 54
jess 3217 | (89| 106 120 1392642 50 39
mpegaudio | 2794 | (81| 94 108 1152438 48 33
mtrt 2739 | (83| 97 111 118 |25|40 49 34
soot-c 4838 | |7.1 [137 184 982642 48
sablecc-j 5609 | (69| 84 96 95]23|36 39
polyglot 5617 | [79| 94 108 1102|2437 47 33
antlr 3808 [[94 [121 138 132]f25[41 52 43
bloat 5238 | 0.2 | 446 120128 |49 52 6.7
chart 7070 | 00 | 174 182)27 | 48
Jython 4402 | |99 | 559 156 | 25|43 46 40
pmd 7220 | (76 | 146 170 1102442 42
ps 3875|187 99 110 1202640 52 44

Table III: Number of equivalence classes of abstract contexts

ACACES-3 July 2007 © BG Ryder TRMET EIUNIWWdﬁiigSU 28

PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

14

#Distinct Points-to Sets

Lhotak & Hendren, CC'06
* Found fairly equivalent numbers of
distinct points-to sets across all
algorithms with all levels of context.

* Means the problem for a non-BDD
solution procedure for context-
sensitive analysis is not points-to set
size, but rather how to efficiently
store contexts.

ACACES-3 July 2007 © BG Ryder 29

Run-time Cast Checks Needed

Lhotak & Hendren, CC'06

object-sensitive call site
Benchmark | insens. 1 2 3 1H 1 2 1H | ZCWL
compress 18 18 18 18 18 18 18 18 18
db 27 27 27 27 21 27 27 27 27
jack 146 145 145 145 104 146 145 146 146
javac 405 370 370 | 363 | 391] 370 391
jess 130 | 130 130 130 86 || 130 130 130 130
mpegaudio 42 38 38 38 38 40 40 40 42
mitrt 31 27 27 27 27 27 27 27 29
soot-c 955 932 932 932 | 878 932 932 932
sablecc-] 375 369 369 369 | 331 370 370 370
polyglot 3539 | 3307| 3306 3306 | 1017 [3526 3443 3526 3318
antlr 205 | 275 275 275 | 237 276 275 276 276
bloat 1241 | 1207 1207 1160 || 1233 | 1207 1233 1234
——> | chart 1097 | 1086| 1085 934 | 1070| 1070
jython 501 | 499 499 471 | 499 499 499 499
pmd 1427 1375 1375 | 1300 1391 1393
ps 641 | 612 612 612 | 421 | 612 612 612 612

ACACES-3 July 2007 © BG Ryder 30

15

Difficult Issues

* Need a whole program for a safe analysis

- For reflection and dynamic class loading must
estimate possible effects

+ Java native methods

- Need to model possible effects
+ Exceptions
- Need to approximate possible control flow
Incomplete programs (e.g., analyzing
libraries)
Lack of benchmarks for comparing analyses

ACACES-3 July 2007 © BG Ryder RUTGERS 3t
FROLANGS

Handling Dynamic Class Loading

* Dynamic class loading, reflection, native
libraries present problems to whole-program
analysis

* New algorithm incrementally accounts for
classes loaded and performs analysis updates

online at runtime

* Generates constraints at runtime and propagates them
when a client needs valid points-to results

M_.Hirzel, A. Diwan, M. Hind, "Pointer Analysis in the
Presence of Dynamic Class Loading”, ECOOP 2004;

M. Hirzel, D. VanDincklage, A. Diwan, M. Hind, "Fast
Online Pointer Analysis”, ACM TOPLAS, April 2007.

ACACES-3 July 2007 © BG Ryder 32

RO lLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

16

Online Points-to AI%or'iThm

irzel et al, ECOOP'04

+ Andersen'’s analysis with field-sensitive
object representation, objects represented
by their creation sites, and static call graph
(CHA)

- Two sTages (can be iterated when get new constraints)
* Constraint generation
+ Constraint propagation with type filtering (producing
points-to sets through fixed-point iteration)
+ Use CHA call graph (generated online) to get call
edges
* Process constraints from an edge only after have seen
both source and target

ACACES-3 July 2007 © BG Ryder RUTGERS
FROLANGS

33

Online Points-to AI%or'iThm

irzel et al, ECOOP'04

+ Uses deferred evaluation to handle

unresolved references

- From native code, reflection, JIT compilation of a
method, type resolution, class loading, VM startup

* Handle reflection through instrumenting the
JVM to add constraints dynamically

- Need to re-propagate at runtime as new constraints
are added

- Use JVM to catch reflection and add appropriate
constraints when it occurs

- Native code with returned heap value assumed to
return any allocated object

- Initial prototype assumed that any exception throw
could hit any catch

ACACES-3 July 2007 © BG Ryder

W
RO lLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

34

17

Online Points-to AI%or'iThm

irzel et al, ECOOP'04

- Showed efficacy through use in new
connectivity-based 6C algorithm
* Used Jikes RVM 2.2.1 on Specjvm98
benchmarks with good results; claimed need

long-running programs for the incremental
computation cost to be amortized

- Validation:
- Need to make sure points-to solution is updated
before do a GC.
- Then 6C verifies the points-to solution by making

sure the dynamically observed points-to's are in
the solution.

ACACES-3 July 2007 © BG Ryder

PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

35

ACACES-3 July 2007 © BG Ryder

PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

36

18

Dynamic Analysis of OOPLs

- Collection of full call traces

- May also collect specific events such as
object creations

- Useful for debugging (e.g., slicing) and
performance diagnosis

-+ Sampling for recognition of “hot
methods”

- Useful for online optimizations in JITs
* Method inlining and specialization

PROLANGS

uuuuuuuu MING LANGUAGES RESEARON GROU®.

ACACES-3 July 2007 © BG Ryder

Feedback Directed Optimization

- Commonly, JITs compile a method method
at first use with fixed set of optimizations

* Feedback directed optimization (FDO) for
longer-running applications
* Profiling used to choose what and how to optimize

- Offline profiles used since online profile collection
often degraded performance due to cost of code
instrumentation

® Translation incurs runtime overhead

© Allows compiler to make judgments using run-
time information

ACACES-3 July 2007 © BG Ryder 38

PROLANGS

uuuuuuuu MING LANGUAGES RESEARON GROU®.

19

Problems with Online FDO

- What is instrumentation?

- e.g., recording object field accesses, method
calls

« Instrumentation overhead

- Profiling interval must be short, but then may not
be representative

- Need a way to stop instrumented execution
* Dynamic instrumentation
* General framework for instrumentation
sampling and experiments with it.

M. Arnold & B.G. Ryder, Reducing the Cost of Instrumenting Code
Via Sampling, PLDI'01; M. Arnold, M. Hind, B.G. Ryder,
Online Feedback-directed Optimization of Java, OOPSLA'02

ACACES-3 July 2007 © BG Ryder 39

PROLANGS

yyyyyy MING LANGUAGES RESEARON GROU®.

Key Idea

Arnold & Ryder, PLDI'01
Arnold, Hind, Ryder, OOPSLA'02

Instrumented
Method Modified
I) - Instrumented
nstrumente
o Method
High Overhead Low Overhead

Achieved through our new sampling framework,

independent of architecture or operating system.

PROLANGS

yyyyyy MING LANGUAGES RESEARON GROU®.

ACACES-3 July 2007 © BG Ryder

20

Advantages

A low overhead sampling framework

- Instrumentation can be run longer for greater
accuracy

- Can apply multiple instrumentations at same time
without framework modification;

- Most instrumentation incorporated without
modification

- Framework is tunable allowing tradeoffs between
overhead and accuracy (i.e., adjustable sampling
rates)

- Deterministic sampling simplifies debugging

ACACES-3 July 2007 © BG Ryder RUTGERS 41
FROLANGS

Arnold & Ryder, PLDI'01
Arnold, Hind, Ryder, OOPSLA'02

Framewor
/ Modified Instrumented Method \
Y Y N
------- | 4
Checking Duplicated
Code (Instrumented)
Code
€« —=—=—=== ==
N)
K Low Overhead High Overhe (y
ACACES-3 July 2007 © BG Ryder RUTGERS W
PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

21

@hod entr Modified Instrumented Method
che;lz DR Duplicated Code

~

~
/,’ \\?
~
o | .

‘ \ O

Checking Code\ ‘\\ \

\
* \
\
& N
— | Arnold & Ryder, PLDI'O1

ACACES-3 July 2007 © BG Ryder RUTGERS Arnold, Hind, Ryder, OOPSLA'G2
PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

Arnold & Ryder, PLDI'01
Arnold, Hind, Ryder, OOPSLA'02

Potential Disadvantages

* Code space may be doubled
- VM will apply instrumentation selectively
* Only in frequently executing methods

- Designed other space-saving versions of
framework

- Empirical results show space usage is not a
problem
- Sampled profile not same as exhaustive
profile
- Can't determine that an event DID NOT OCCUR
- Can't check “for every iteration” assertions

ACACES-3 July 2007 © BG Ryder 44

PROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

22

Counter-based Sampling

- Take a sample after executing n checks

- Each check is:

globalCounter --;

If (globalCounter ==0) {
takeSample();
globalCounter = resetValue;

}
- Advantages
- Simple, but effective
- Hardware independent
- Tunable, flexible sampling rate

- Can be used WITh Gﬂy VM Arnold & Ryder, PLDI'01
Arnold, Hind, Ryder, OOPSLA'02

TTE ST TE UNIVERSITY OF NEW JEESEY
ACACES-3 July 2007 © BG Ryder RUTGERS 45
PROL,

Framework Measurment

+ Implemented in IBM's Jalapeno JVM

+ 10 benchmarks
- SPECjvm98(input size 10), Volano, pBob, opt-compiler
- Running times from 1.1-4.8 seconds
- Class file sizes from 10K-1,517K bytes
- Machine 333Mz IBM RS/6000 powerPC 604e with 2096Mb
RAM running AIX 4.3
+ Instrumented all methods in applications and
libraries

Arnold & Ryder, PLDI'01
Arnold, Hind, Ryder, OOPSLA'02

AL

PROLANGS

yyyyyy MING LANGUAGES RESEARON GROU®.

ACACES-3 July 2007 © BG Ryder 46

23

Instrumentation

- Call-edge:
- Collect caller, callee, call-site within
caller at method entry
- One counter per call edge

* Field-access:
- One counter per field of each class

- Each putfield, getfield access
instrumented

Arnold & Ryder, PLDI'01

Arnold, Hind, Ryder, OOPSLA'02

ACACES-3 July 2007 © BG Ryder RUTEEEERESEV 47
PROLANGS

yyyyyy MING LANGUAGES RESEARON GROU®.

Exhaustive Instrumentation

Overhead
On average, 88 % call-edge and 60 % field-access

~

)

Duplicated
Instrumented)
Code

-
High 0verhe¢y

PROLANGS

yyyyyy MING LANGUAGES RESEARON GROU®.

ACACES-3 July 2007 © BG Ryder

24

TE STATE ONIVERSITY OF NEW JERSEY

ACACES-3 July 2007 © BG Ryder 49
PROLANGS
L d [d
Findings - #Contexts
object-sensitive call site

Benchmark | insens. 1 2 3 1H 1 2 1H ZCWL
compress 2596 | 137 113 1517 13465 237 65| 20107
db 2613 | 13.7 115 1555 13465 236 65| 7.9x10¢
jack 2869 | 13.8 156 1872 132 |68 220 68| 2.7 x107
javac 3780 | 15.8 297 13289 156 |84 244 84

jess 3216 | 190 305 5394 186 |67 207 67| 6.1x10°
mpegaudio 2793 |1 130 107 1419 127 |63 221 63| 44 x10°
mirt 2738 [133 108 1447 13166 226 66| 1.2x10°
soot-c 4837 | 11.1 168 4010 10982 198 82

sablecc-] 5608 | 10.8 116 1792 105 |55 126 55

polyglot 5616 | 11.7 149 2011 112|171 144 71 10130
antir 3897 | 150 309 8110 147 |96 191 96| 4.8x10°
bloat 5237 | 143 291 14089 159 89| 3.0x10°
chart 7069 | 223 500 219 |70 335

jython 4401 | 188 384 18367 162 67| 2.1x10%®
pmd 7219 | 134 283 5607 129 |66 239 66

ps 3874 | 133 271 24967 13190 224 90| 2.0 x10°

Table II: Total number of abstract contexts
ACACES-3 July 2007 © BG Ryder RUTGERS 50

ROLANGS

PROGRAMMNG LANGUAGES RESEARCH GROUP.

25

Findings - #Equiv Contexts

Given <m1,c1> and <ml,c2>, if every local reference has same
points-to set in these 2 contexts, they are equivalent

Found many equivalent abstract contexts in the data

In general, there are more equiv classes of contexts with ObjSens
than with CallSite abstractions

- Expect better precision from this
In both ObjSens and CallSite, increasing k increases the #equiv
classes only slightly while increasing the absolute #contexts
significantly (little precision improvement for a large cost)

#contexts of ZCWL is very small because of the merges on the
large SCCs in the benchmark initial call graphs; effectively ZCWL
models much of the call graph context-insensitively

“Context-sensitive analysis M”, O. Lhotak, L. Hendren, CC’06

ACACES-3 July 2007 © BG Ryder RUTGERS 51
PROLANGS

26

