
1

ACACES-3 July 2007 © BG Ryder 1

Advanced Program Analyses
for Object-oriented Systems

Dr. Barbara G. Ryder
Rutgers University

http://www.cs.rutgers.edu/~ryder
http://prolangs.rutgers.edu/

July 2007

ACACES-3 July 2007 © BG Ryder 2

Lecture 3 - Outline

• Context-sensitive reference analysis
– K-CFA vs. Object-sensitive analysis
– Clients: run-time cast check removal, side effect

analysis
• Dealing with the ‘closed world’
assumption
– Modeling libraries
– Incremental points-to analysis

• Dynamic analysis for Feedback-
directed Optimization (FDO)

2

ACACES-3 July 2007 © BG Ryder 3

Imprecision of
Context-insensitive Analysis

• Does not distinguish contexts for instance
methods and constructors
– States of distinct objects are merged

• Common OOPL features and idioms result in
imprecision
– Encapsulation

• set() method conflates all instances with same field
– Inheritance

• Initialized fields in superclass constructor conflates points-to
sets of subclass objects created

– Containers, maps and iterators
• Same creation site results in apparent unioning of all contents

ACACES-3 July 2007 © BG Ryder 4

Example: Imprecision

class Y extends X { … }

class A {
 X f;
 void setf(X q) {

this.f=q ; }
}

A a = new A() ;
a.setf(new X()) ;
A aa = new A() ;
aa.setf(new Y()) ;
}

o2o1a

thissetf q

o3 aa o4f

f

f

f

3

ACACES-3 July 2007 © BG Ryder 5

Example - Imprecision
class X {void n(){}}
class Y extends X{ void n(){}}
class Z extends X{ void n(){}}
class A { X f;
 A(X xa) {this.f = xa;}}
Class B extends A{
 B(X xb) {super(xb);..}
 void m(){
 X xb = this.f; xb.n();}}
Class C extends A{
 C(X xc) {super(xc);..}
 void m(){
 X xc = this.f; xc.n();}}
//in main()
{Y y = new Y(); Z z = new Z();
B b = new B(y); C c = new C(z);
b.m(); c.m();
}

What is target of the red call?
What is the target of the
blue call?

ACACES-3 July 2007 © BG Ryder 6

Context Sensitivity

• Keeping calling contexts distinct during
the analysis

• Classically two approaches
– Call string - distinguish analysis result by

(truncated) call stack on which it is obtained
• e.g., K-CFA

– Functional - distinguish analysis result by (partial)
program state at call

• e.g., receiver identity, argument types

M. Sharir, A. Pneuli, “Two Approaches to Interprocedural
Dataflow Analysis”. Ch 7 in Program Flow Analysis,
Edited by S. Muchnick, N. Jones, Prentice-Hall 1981

4

ACACES-3 July 2007 © BG Ryder 7

1-CFA
• Calling context is tail of call string
(1-CFA is last call site)

static void main(){
 B b1 = new B();//OB
 A a1 = new A();//OA
 A a2,a3;

C1: a2 = f(b1);
C2: a2.foo();
C3: a3 = f(a1);
C4: a3.foo();
}
public static A f(A a4){return a4;}

b1 oB

a1 oA

at C2, main calls B.foo()
at C4, main calls A.foo()

a2

a4C1

C3

a3

Points-to Graph

ACACES-3 July 2007 © BG Ryder 8

1-CFA Characteristics

• Call-string approach to context sensitivity
• Only analyzes methods reachable from main()
• Keeps track of individual reference variables

and fields
• Groups objects by their creation site
• Incorporates reference value flow in

assignments and method calls
• Differentiates points-to relations for

different calling contexts

5

ACACES-3 July 2007 © BG Ryder 9

Object-sensitive Analysis (ObjSens)

• Receiver objects used as calling
context

• Instance methods and constructors
analyzed for different contexts

• Multiple copies of local reference
variables

this.f=q thisA.m.f=q o1 o1

o1

ACACES-3 July 2007 © BG Ryder 10

Example: Object-sensitive Analysis

class A {
 X f;
 void m(X q) {

this.f=q ; }
}

A a = new A() ;
a.m(new X()) ;
A aa = new A() ;
aa.m(new Y()) ;

o2
f

o1a

thisA.m
o1 qA.m

o1
thisA.m.f=q o1 o1

o1

 this.f=q ;

o3 aa o4

o3thisA.m
o3qA.m

thisA.m.f=q o3 o3

f

6

ACACES-3 July 2007 © BG Ryder 11

ObjSens Analysis
• Based on Andersen’s points-to for C
• Uses receiver object to distinguish
different calling contexts

• Groups objects by creation sites
• Represents reference variables and
fields by name program-wide

• Flow-insensitive, context-sensitive,
field-sensitive

Milanova, A. Rountev, B. G. Ryder, “Practical Points-to Analyses
 for Java”, ISSTA’02;“Parameterized Object Sensitivity for
Points-to Analysis for Java”, TOSEM, Jan 2005

ACACES-3 July 2007 © BG Ryder 12

Side-effect Analysis:
Modified Objects Per Statement

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

One Two or three Four to nine More than nine

jb jess sablecc raytrace Average

O
B
J
E
C
T
-S
E
N
S
IT
IV
E

C
O
N
T
E
X
T
-IN

S
E
N
S
IT
IV
E

Milanova et.al, ISSTA’02

7

ACACES-3 July 2007 © BG Ryder 13

Side Effect Analysis Comparison
Milanova, et. al TOSEM05

ACACES-3 July 2007 © BG Ryder 14

Comparison ObjSens vs 1-CFA

• The call string and functional
approaches to context sensitivity are
incomparable!

• Neither is more powerful than the
other

• Recent papers cite ObjSens as better
on clients: race detection and cast
check elimination (Aiken et. al, PLDI’06; Lhotak &
Hendren, CC’06)

8

ACACES-3 July 2007 © BG Ryder 15

1-CFA more precise than ObjSens
static void main(){
 D d1 = new D();
 if (…)C1: (d1.f(new B())).g();
 else C2: (d1.f(new C())).g();
}
public class D
{ public A f(A a1){return a1;}
}

d1 oD

A

B DC
g() g() f(A)

oBthisD.f/C1
a1

thisD.f/C2 oC

1-CFA

retD.f

C1
C2

ACACES-3 July 2007 © BG Ryder 16

1-CFA more precise than ObjSens

retD.f
d1 oD

1-CFA distinguishes the
two calling contexts of D.f
at C1 and C2;
At C1, B.g() called;
At C2, C.g() called;

oBthisD.f/C1
a1

thisD.f/C2 oC

1-CFA

C1

C2

static void main(){
 D d1 = new D();
 if (…)C1: (d1.f(new B())).g();
 else C2: (d1.f(new C())).g();
}
public class D
{ public A f(A a1){return a1;}
}

9

ACACES-3 July 2007 © BG Ryder 17

1-CFA more precise than ObjSens
ObjSens

retD.f
d1 oD

oC

oB
a1

this
oB

static void main(){
 D d1 = new D();
 if (…)C1: (d1.f(new B())).g();
 else C2: (d1.f(new C())).g();
}
public class D
{ public A f(A a1){return a1;}
}

A

B DC
g() g() f(A)

ACACES-3 July 2007 © BG Ryder 18

1-CFA more precise than ObjSens
ObjSens

retD.f
d1 oD

oC

oB
a1

this
oB

ObjSens groups the two
calling contexts of D.f
with the same receiver
at C1 and C2;
Both B.g(),C.g() are
called at C1 and C2;

static void main(){
 D d1 = new D();
 if (…)C1: (d1.f(new B())).g();
 else C2: (d1.f(new C())).g();
}
public class D
{ public A f(A a1){return a1;}
}

10

ACACES-3 July 2007 © BG Ryder 19

ObjSens more precise than
1-CFApublic class A

{ X xx;
 A (X xa){ this.xx=xa;}
}
public class B extends A
{ B (X xb){C3: super(xb);}
 public X f() {return this.xx;}

static void main(){
 X x1,x2;

C1: B b1 = new B(new Y());//oB1
C2: B b2 = new B(new Z());//oB2

oB1b1 xx oY xbB1

thisB1
xaB1

thisB2
oB2 oZ

xx
xbB2

xaB2
b2

X

Y Zg()

g()

g()

A

B
f()

ObjSens

ACACES-3 July 2007 © BG Ryder 20

ObjSens more precise than
1-CFApublic class A

{ X xx;
 A (X xa){ this.xx=xa;}
}
public class B extends A
{ B (X xb){C3: super(xb);}
 public X f() {return this.xx;}
 static void main(){
 X x1,x2;
 C1: B b1 = new B(new Y());//oB1
 C2: B b2 = new B(new Z());//oB2
 x1=b1.f();
C4: x1.g();
 x2=b2.f();
C5: x2.g();
}

oB2

oB1b1

oZ

xx

xx
b2

oY

X

Y Zg()

g()

g()

A

B
f()

thisf.B1

x1

thisf.B2
x2

ObjSens

11

ACACES-3 July 2007 © BG Ryder 21

ObjSens more precise than
1-CFApublic class A

{ X xx;
 A (X xa){ this.xx=xa;}
}
public class B extends A
{ B (X xb){C3: super(xb);}
 public X f() {return this.xx;}
 static void main(){
 X x1,x2;
 C1: B b1 = new B(new Y());//oB1
 C2: B b2 = new B(new Z());//oB2
 x1=b1.f();
C4: x1.g();
 x2=b2.f();
C5: x2.g();
}

X

Y Zg()

g()

g()

A

B
f()

ObjSens finds
C4 calls Y.g() and
C5 calls Z.g()

ACACES-3 July 2007 © BG Ryder 22

ObjSens more precise than
1-CFApublic class A

{ X xx;
 A (X xa){ this.xx=xa;}
}
public class B extends A
{ B (X xb){C3: super(xb);}
 public X f() {return this.xx;}

static void main(){
 X x1,x2;
C1: B b1 = new B(new Y());//oB1
C2: B b2 = new B(new Z());//oB2

X

Y Zg()

g()

g()

A

B
f()

oB2

oB1b1

oZ

oY xbC1

xbC2b2

thisC1

thisC2

thisC3 xaC3

1-CFA

xx

xx

xx
xx

12

ACACES-3 July 2007 © BG Ryder 23

ObjSens more precise than
1-CFApublic class A

{ X xx;
 A (X xa){ this.xx=xa;}
}
public class B extends A
{ B (X xb){C3: super(xb);}
 public X f() {return this.xx;}
 static void main(){
 X x1,x2;
 C1: B b1 = new B(new Y());//oB1
 C2: B b2 = new B(new Z());//oB2
 x1=b1.f();
C4: x1.g();
 x2=b2.f();
C5: x2.g();
}

X

Y Zg()

g()

g()

A

B
f()

1-CFA

oB2

oB1b1

oZ

oY

b2

x1
x2

xx

xx

xx
xx

ACACES-3 July 2007 © BG Ryder 24

ObjSens more precise than
1-CFApublic class A

{ X xx;
 A (X xa){ this.xx=xa;}
}
public class B extends A
{ B (X xb){c3: super(xb);}
 public X f() {return this.xx;}
 static void main(){
 X x1,x2;
 C1: B b1 = new B(new Y());//oB1
 C2: B b2 = new B(new Z());//oB2
 x1=b1.f();
C4: x1.g();
 x2=b2.f();
C5: x2.g();
}

X

Y Zg()

g()

g()

A

B
f()

1-CFA finds
C4 calls Y.g(), Z.g() and
C5 calls Y.g(), Z.g()

13

ACACES-3 July 2007 © BG Ryder 25

Empirical Comparisons CC’06

• Reports on a comparison of 4 different
context-sensitive analyses
– Run on same 16 benchmarks
– Implemented on the same framework (JEDD in Soot)
– Combined with context-sensitive object naming schemes
– Effectiveness measured on devirtualization, redundant

cast removal, call graph size
• Bottom line: object-sensitive analysis

shown to be superior, in terms of
scalability and precision, on points-to
analysis and cast elimination

 “Context-sensitive analysis - Is it worth it?”,
O. Lhotak, L. Hendren, CC’06

ACACES-3 July 2007 © BG Ryder 26

Context-sensitive Points-to
Algorithms in Study

• Informal algorithm is flow- and context-insensitive
• Call-site-string-based uses a string of the k most

recent actual call sites on the runtime stack as the
‘calling context’

• Receiver object-based (object-sensitive) uses the
sequence of the k most recent receiver objects as
the ‘calling context’

• Cloning-based (with BDDs) actually makes one copy
per method instantiation
– Corresponding to call edges that DO NOT participate in a cycle in

the context-insensitive call graph (ZCWL, PLDI’04)

Lhotak & Hendren, CC’06

14

ACACES-3 July 2007 © BG Ryder 27

Questions to answer

1. Which contexts are actually useful to improve
analysis precision?
• How often contexts have identical points-to info?
• How much context can be saved for practical cost?
• Does more context help precision?

2. Why can BBDs do so well in representing large
numbers of contexts?
• How poorly would non-BDD representations do for

context-sensitive analyses?
3. How well do the algorithms do on client problems?

• Call graph construction, devirtualization, unnecessary
cast elimination

Lhotak & Hendren, CC’06

ACACES-3 July 2007 © BG Ryder 28

Findings - #Equiv Contexts
Lhotak & Hendren, CC’06

15

ACACES-3 July 2007 © BG Ryder 29

#Distinct Points-to Sets

• Found fairly equivalent numbers of
distinct points-to sets across all
algorithms with all levels of context.

• Means the problem for a non-BDD
solution procedure for context-
sensitive analysis is not points-to set
size, but rather how to efficiently
store contexts.

Lhotak & Hendren, CC’06

ACACES-3 July 2007 © BG Ryder 30

Run-time Cast Checks Needed
Lhotak & Hendren, CC’06

16

ACACES-3 July 2007 © BG Ryder 31

Difficult Issues

• Need a whole program for a safe analysis
– For reflection and dynamic class loading must

estimate possible effects
• Java native methods

– Need to model possible effects
• Exceptions

– Need to approximate possible control flow
• Incomplete programs (e.g., analyzing

libraries)
• Lack of benchmarks for comparing analyses

ACACES-3 July 2007 © BG Ryder 32

Handling Dynamic Class Loading
• Dynamic class loading, reflection, native

libraries present problems to whole-program
analysis

• New algorithm incrementally accounts for
classes loaded and performs analysis updates
online at runtime

• Generates constraints at runtime and propagates them
when a client needs valid points-to results

M.Hirzel, A. Diwan, M. Hind, “Pointer Analysis in the
Presence of Dynamic Class Loading”, ECOOP 2004;
M. Hirzel, D. VanDincklage, A. Diwan, M. Hind, “Fast
Online Pointer Analysis”, ACM TOPLAS, April 2007.

17

ACACES-3 July 2007 © BG Ryder 33

Online Points-to Algorithm
• Andersen’s analysis with field-sensitive

object representation, objects represented
by their creation sites, and static call graph
(CHA)

• Two stages (can be iterated when get new constraints)
• Constraint generation
• Constraint propagation with type filtering (producing

points-to sets through fixed-point iteration)
• Use CHA call graph (generated online) to get call

edges
• Process constraints from an edge only after have seen

both source and target

Hirzel et al, ECOOP’04

ACACES-3 July 2007 © BG Ryder 34

Online Points-to Algorithm
• Uses deferred evaluation to handle

unresolved references
– From native code, reflection, JIT compilation of a

method, type resolution, class loading, VM startup

• Handle reflection through instrumenting the
JVM to add constraints dynamically

– Need to re-propagate at runtime as new constraints
are added

– Use JVM to catch reflection and add appropriate
constraints when it occurs

– Native code with returned heap value assumed to
return any allocated object

– Initial prototype assumed that any exception throw
could hit any catch

Hirzel et al, ECOOP’04

18

ACACES-3 July 2007 © BG Ryder 35

Online Points-to Algorithm

• Showed efficacy through use in new
connectivity-based GC algorithm

• Used Jikes RVM 2.2.1 on Specjvm98
benchmarks with good results; claimed need
long-running programs for the incremental
computation cost to be amortized

• Validation:
– Need to make sure points-to solution is updated

before do a GC.
– Then GC verifies the points-to solution by making

sure the dynamically observed points-to’s are in
the solution.

Hirzel et al, ECOOP’04

ACACES-3 July 2007 © BG Ryder 36

19

ACACES-3 July 2007 © BG Ryder 37

Dynamic Analysis of OOPLs

• Collection of full call traces
– May also collect specific events such as
object creations

– Useful for debugging (e.g., slicing) and
performance diagnosis

• Sampling for recognition of “hot
methods”
– Useful for online optimizations in JITs

• Method inlining and specialization

ACACES-3 July 2007 © BG Ryder 38

Feedback Directed Optimization
• Commonly, JITs compile a method method

at first use with fixed set of optimizations
• Feedback directed optimization (FDO) for

longer-running applications
• Profiling used to choose what and how to optimize
• Offline profiles used since online profile collection

often degraded performance due to cost of code
instrumentation

 Translation incurs runtime overhead
 Allows compiler to make judgments using run-

time information

20

ACACES-3 July 2007 © BG Ryder 39

Problems with Online FDO
• What is instrumentation?

– e.g., recording object field accesses, method
calls

• Instrumentation overhead
– Profiling interval must be short, but then may not

be representative
– Need a way to stop instrumented execution

• Dynamic instrumentation
• General framework for instrumentation

sampling and experiments with it.
M. Arnold & B.G. Ryder, Reducing the Cost of Instrumenting Code
Via Sampling, PLDI’01; M. Arnold, M. Hind, B.G. Ryder,
Online Feedback-directed Optimization of Java, OOPSLA’02

ACACES-3 July 2007 © BG Ryder 40

Key Idea

Modified
Instrumented

Method

Instrumented
Method

Instrumented
Code

High Overhead Low Overhead

Achieved through our new sampling framework,
independent of architecture or operating system.

Arnold & Ryder, PLDI’01
Arnold, Hind, Ryder, OOPSLA’02

21

ACACES-3 July 2007 © BG Ryder 41

Advantages
A low overhead sampling framework

– Instrumentation can be run longer for greater
accuracy

– Can apply multiple instrumentations at same time
without framework modification;

– Most instrumentation incorporated without
modification

– Framework is tunable allowing tradeoffs between
overhead and accuracy (i.e., adjustable sampling
rates)

– Deterministic sampling simplifies debugging

ACACES-3 July 2007 © BG Ryder 42

 Framework

Checking
Code

Duplicated
(Instrumented)

Code

Low Overhead High Overhead

Modified Instrumented Method

Arnold & Ryder, PLDI’01
Arnold, Hind, Ryder, OOPSLA’02

22

ACACES-3 July 2007 © BG Ryder 43

Checking Code

Duplicated Code
Method entry

 check

check

Modified Instrumented Method

Arnold & Ryder, PLDI’01
Arnold, Hind, Ryder, OOPSLA’02

ACACES-3 July 2007 © BG Ryder 44

Potential Disadvantages
• Code space may be doubled

– VM will apply instrumentation selectively
• Only in frequently executing methods

– Designed other space-saving versions of
framework

– Empirical results show space usage is not a
problem

• Sampled profile not same as exhaustive
profile
– Can’t determine that an event DID NOT OCCUR
– Can’t check “for every iteration” assertions

Arnold & Ryder, PLDI’01
Arnold, Hind, Ryder, OOPSLA’02

23

ACACES-3 July 2007 © BG Ryder 45

Counter-based Sampling

• Take a sample after executing n checks
• Each check is:

globalCounter --;
If (globalCounter ==0) {

takeSample();
globalCounter = resetValue;

}

• Advantages
– Simple, but effective
– Hardware independent
– Tunable, flexible sampling rate
– Can be used with any VM Arnold & Ryder, PLDI’01

Arnold, Hind, Ryder, OOPSLA’02

ACACES-3 July 2007 © BG Ryder 46

Framework Measurment
• Implemented in IBM’s Jalapeno JVM
• 10 benchmarks

– SPECjvm98(input size 10), Volano, pBob, opt-compiler
– Running times from 1.1-4.8 seconds
– Class file sizes from 10K-1,517K bytes
– Machine 333Mz IBM RS/6000 powerPC 604e with 2096Mb

RAM running AIX 4.3

• Instrumented all methods in applications and
libraries

Arnold & Ryder, PLDI’01
Arnold, Hind, Ryder, OOPSLA’02

24

ACACES-3 July 2007 © BG Ryder 47

Instrumentation

• Call-edge:
– Collect caller, callee, call-site within

caller at method entry
– One counter per call edge

• Field-access:
– One counter per field of each class
– Each putfield, getfield access

instrumented

Arnold & Ryder, PLDI’01
Arnold, Hind, Ryder, OOPSLA’02

ACACES-3 July 2007 © BG Ryder 48

Exhaustive Instrumentation
Overhead

Checking
Code

Duplicated
(Instrumented)

Code

Low Overhead High Overhead

On average, 88% call-edge and 60% field-access

25

ACACES-3 July 2007 © BG Ryder 49

ACACES-3 July 2007 © BG Ryder 50

Findings - #Contexts

26

ACACES-3 July 2007 © BG Ryder 51

Findings - #Equiv Contexts
• Given <m1,c1> and <m1,c2>, if every local reference has same

points-to set in these 2 contexts, they are equivalent
• Found many equivalent abstract contexts in the data
• In general, there are more equiv classes of contexts with ObjSens

than with CallSite abstractions
– Expect better precision from this

• In both ObjSens and CallSite, increasing k increases the #equiv
classes only slightly while increasing the absolute #contexts
significantly (little precision improvement for a large cost)

• #contexts of ZCWL is very small because of the merges on the
large SCCs in the benchmark initial call graphs; effectively ZCWL
models much of the call graph context-insensitively

 “Context-sensitive analysis - Is it worth it?”, O. Lhotak, L. Hendren, CC’06

